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The Exponential Problem

Defining the Theory Problem

Ne N+c
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@ Ground state energies, Magnetic and spin orders and
correlations. Magnetization measurements: SQUID

@ Superconducting orders and gaps. Superconducting gaps:
Andreev spectroscopy

@ A(k,w). ARPES measurements
@ N(r,w). STM measurements
@ S(k,w). neutron scattering measurements

Alvarez et al. http


http://www.ornl.gov/~gz1/

The Exponential Problem

The Exponential Problem in Second Quantization

Ne N+c

H = ZtI’Y/'Y,CI'yQ/’Y 47’['60;2 |f/—f/ : (2)
Example: 6 sites, 2 electrons leads to cg = 15 states
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The Exponential Problem

What does exponential mean?

@ Assume N; “flavors” or orbitals (including spin), N sites

@ Assume no symmetries (won’t change the argument much)
@ Then complexity is 2V*Nr,

@ Assume a more or less realistic problem: Ny =10, N =10

@ Exact diagonalization would take ~ 108 billion years to
complete

Alvarez et al. http


http://www.ornl.gov/~gz1/

Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Quantum Monte Carlo

@ Calculates observables exactly (error can be made
arbitrary)
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Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Quantum Monte Carlo

@ Calculates observables exactly (error can be made
arbitrary)

@ Has a complexity that scales with N*
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Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Quantum Monte Carlo

@ Calculates observables exactly (error can be made
arbitrary)

@ Has a complexity that scales with N*
@ Does previous problem in 6 months to 1 year
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Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Electronic Inhomogeneities in Cuprates

@ Spin and charge stripes (Tranquada et al., '95; Mook et al.,
'00)

@ Checkerboard charge
modulations (Hanaguri, Davis et al., '04)

@ Random
superconducting gap modulations (Lang,
Davis eta I, '02; Gomes, Yazdani et al., '07)
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Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Inhomogeneities in Cuprates

@ Question: What is the effect of stripes on the pairing
correlations and T.?

Period 8 stripes imposed by external potential
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Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Inhomogeneities in Cuprates

@ Question: What is the effect of stripes on the pairing

correlations and 7.7
@ Answer: It can enhance both of them [

__n
1—T»rP)
Loeding oigenvalue A

N\

Py

vii,)

&
#/4 modulation (one stripe)
o015 0.20 025

Alvarez etal. h



http://www.ornl.gov/~gz1/

Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Inhomogeneities in Cuprates

@ What is the effect of disorder on the pairing correlations
and T,?

Alvarez etal. h


http://www.ornl.gov/~gz1/

Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Inhomogeneities in Cuprates

@ What is the effect of disorder on the pairing correlations
and T.;?

@ Currently under study [ ]
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Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Quantum Monte Carlo is accurate but...
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Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Quantum Monte Carlo is accurate but...

...there’s the sign problem...

@ For fermions probabilities not necessarily positive definite

@ “[The] sign problem is nondeterministic polynomial (NP)
hard...” [ ]
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Quantum Monte Carlo Case Study: Stripes in the Hubbard Model
Case Study: Disorder in the Hubbard Model
New Developments

Quantum Monte Carlo is accurate but...

...there’s the sign problem...

@ For fermions probabilities not necessarily positive definite

@ “[The] sign problem is nondeterministic polynomial (NP)
hard...” [ ]

Current trends in QMC for Strongly Correlated Electrons

@ Continuous time auxiliary field algorithm (expand in U)
[ ]

@ Hybridization expansion algorithm (expand in t)

Alvarez et al. http://www.ornl
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics: Wilson’s RG
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance

Case Study

DMRG Basics: Wilson’s RG
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance

Case Study

DMRG Basics: Wilson’s RG
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance

Case Study

DMRG Basics: Wilson’s RG
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

® S]@iS/SiSN

System environment
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics
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System environment
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

LOOCOO0| @ O [O60OO8

system environment
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

LOOCOO0| @ O [O60OO8

system environment

@ Algorithm: “Density Matrix Renormalization Group” [

]
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

LOOCOO0| @ O [O60OO8

system environment

@ Algorithm: “Density Matrix Renormalization Group” [
]

@ Discard (an exponential number of) states. Keep m states
in Hibert space at all times.
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

LOOCOO0| @ O [O60OO8

system environment

@ Algorithm: “Density Matrix Renormalization Group” [
]

@ Discard (an exponential number of) states. Keep m states
in Hibert space at all times.

@ Controlled error, exponentially decaying with m for most 1D
systems.
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics
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system environment
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

O S SieisiSISN

system environment
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

LOOCOO00] @ O |[OO00O0

system environment
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

LOOCOO00] @ O |[OO00O0

system environment

@ After adding a site the Hilbert space of system and
environment (separately) is transformed by a linear
transformation |k’) = >, Wi «|k)
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

LOOCOO00] @ O |[OO00O0

system environment

@ After adding a site the Hilbert space of system and
environment (separately) is transformed by a linear
transformation |k’) = >, Wi «|k)

@ Operators are transformed by A’ = WTAW
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Basics

LOOCOO00] @ O |[OO00O0

system environment

@ After adding a site the Hilbert space of system and
environment (separately) is transformed by a linear
transformation |k’) = >, Wi «|k)

@ Operators are transformed by A’ = WTAW

o Transformahons ‘stack™:
A= Wiwiwiw AW w, WoWs - -

Alvarez et al. http://w
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

The DMRG Transformation
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

The DMRG Transformation
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

The DMRG Transformation
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

The DMRG Transformation

o WIW =1 but WWT # | (i.e., there is no right inverse)
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

The DMRG Transformation

o WIW =1 but WWT # | (i.e., there is no right inverse)
@ Let A; be an operator that lives on the Hilbert space for a
single site i in the real space basis

(OO0 @O0]| @ O [OO0O00

system | environment
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

The DMRG Transformation

o WIW =1 but WWT # | (i.e., there is no right inverse)
@ Let A; be an operator that lives on the Hilbert space for a
single site i in the real space basis

(OO0 @O0]| @ O [OO0O00

system | environment

Definition of A
Define A; = - -- Wi W) W] W] AWo W Wo W3 - - . Note that:
@ A, acts on a larger Hilbert space than A,

© But not exponentially large (it is truncated)
@ A; still acts only on i (well... almost)
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Assembling The Hamiltonian

(606 @C0] @ 0O [OSOESS]

system | environment

@ Current DMRG basis for system and environ.
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Assembling The Hamiltonian

(606 @C0] @ 0O [OSOESS]

system | environment

@ Current DMRG basis for system and environ.
@ “Assembler operators” X0, X1, ... X/
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Assembling The Hamiltonian

(606 @C0] @ 0O [OSOESS]

system | environment

@ Current DMRG basis for system and environ.

@ “Assembler operators” X0, X1, ... X/

@ Let A; =[], X', where T is a subset of {0, 1,---2/ — 1},
X+ = (X"). Let A;, B;, C;, etc. acton i
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Assembling The Hamiltonian

(606 @C0] @ 0O [OSOESS]

system | environment

@ Current DMRG basis for system and environ.

@ “Assembler operators” X0, X1, ... X/

@ Let A; =[], X', where T is a subset of {0, 1,---2/ — 1},
X+ = (X"). Let A;, B;, C;, etc. acton i

° Honsite = Ci and Hconnections = Ai Bj
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Assembling The Hamiltonian

(606 @C0] @ 0O [OSOESS]

system | environment

@ Current DMRG basis for system and environ.
@ “Assembler operators” X0, X1, ... X/

@ Let A; =[], X', where T is a subset of {0, 1,---2/ — 1},
X+ = (X"). Let A;, B;, C;, etc. acton i

° Honsite = Ci and Hconnections = Ai Bj

@ Keep Hsystem and Hepvironment ON current DMRG basis but
build superblock Hamiltonian on the fly

Alvarez et al. http
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Types of Hamiltonian Connections

Onsite Terms: trivial, add when fresh site added
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Types of Hamiltonian Connections

[666€60] @ O [CEooc6]

system environment

Connections

° : With a new site: Fluff up:
(--- WWIWI AW Wi W, - )B; = AiB;
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Types of Hamiltonian Connections

(666660 0 O [0oooo6

system environment

Connections

° : With a new site: Fluff up:
(--- WWIWI AW Wi W, - )B; = AiB;
o : Between old sites: Caveat, no right inverse!

WIABW # (WIAW)(WIBW), i.e. AB; # A:B;

Alvarez etal. http://www.


http://www.ornl.gov/~gz1/

DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Types of Hamiltonian Connections

[6cee6c0] 0@ O [Ooooes
Sy:

envirol it

typelll

Connections

° : With a new site: Fluff up:
(--- WWIWI AW Wi W, - )B; = AiB;

() : Between old sites: Caveat, no right inverse!
WIABW # (WIAW)(WIBW), i.e. AB; # AB;

@ Connection IlI: Across system and environment: OK

Alvarez et al. http:
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Connections System-Environment

@ CPU intensive part: sum over connections of form c,.Tc/-
(Hubbard), S;"S;, S7S7 (Heisenberg), and generally:
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Connections System-Environment

@ CPU intensive part: sum over connections of form c,.Tc/-
(Hubbard), S;"S;, S7S7 (Heisenberg), and generally:

' .
system ' environ.

Aj ‘ Bj
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Connections System-Environment

@ CPU intensive part: sum over connections of form c,.Tc/-
(Hubbard), S;"S;, S7S7 (Heisenberg), and generally:

system ; environ.
Aj ‘ Bj

i ]

> AB 3)

connectionsi,j
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Connections System-Environment

@ CPU intensive part: sum over connections of form c,.Tc/-
(Hubbard), S;"S;, S7S7 (Heisenberg), and generally:

SpE _
(A°B")ccr = Z GPSE(C a+bNs (SaAa 2Bp b’) XGPSE(C/) 2 +b'Ns
a,b,a’ b’

system 1 environ.
A i ' Bj

i ]

@ The sum over i, j

> AB )

connectionsi,j
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DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

DMRG Parallelization
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@ Figure: Serial (red/green lines) vs. Parallel (blue lines)
° I [ ]

@ Also: [ ]

@ But: Scalability still an open problem. Big pay-off if solved
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DMRG: The Idea
Algorithmic Performance
Case Study

Density Matrix Renormalization Group

Coexistence of Ferromagnetism and Pairing

QU A2 XS
a9 JT VI L
R 000 00
T QA AR P
0o 0Fe 99 d VI Vo AR &
- [ L Q0 00 9
AN WS QAKX AL
T fo i “ag” ] N JYVTD AR
:\\ + 3 < LaOFeAs BaFe,As, FeSe
NI ! bindin
, 1 .
15 2 25
P

M. Johannes, Physics 2008

@ Computed Phase Diagram of a Model for Iron Pnictides
@ User Project: [ ]

Alvarez et al. h


http://www.ornl.gov/~gz1/

DMRG: The Idea
Density Matrix Renormalization Group Algorithmic Performance
Case Study

Current trends in DMRG

@ Other models (e.g. t-j model) and other geometries (e.g.
“trees”)

@ Parallelization
@ Time dependent DMRG (We are doing this now!)
@ Temperature: METTS, | ]

@ Race to solve the 2D problem: MERA, PEPS, too many
new algorithms to list all

Alvarez et al. http
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DFT for Model Hamiltonians

DFT does not apply to model Hamiltonians

Consider [ I:

A=—t> > (c,cirro+He)+U D myny  (4)

i=—c0 © j=—o00

@ Translational invariant chain or ring: density is constant

@ Properties (e.g. kinetic energy) of U =0and U # 0
systems different

@ But: Kohn-Sham predicts that they are the same

Alvarez et al. htt
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DFT for Model Hamiltonians

Hohenberg-Kohn Theorem does not apply

@ Energy not a functional of (only) the density E # E|p]
@ Depends also on U
@ Oron 45;

“‘ Exact Hamiltonian of a Solid

Relevant because:

ne e mie
[ 1

B A 1

H S 2me A ”\r‘rr‘,fr o

@ Fully reductionist approach not < Conplorty s openta n ubor f dctonsins
@ Can be written using tight binding approach
a|WayS useful < Gan s witon n soond mntation

Q Interestin:

e Emergent behavior at the
nanoscale

e What interactions are the most
relevant for a given solid
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Summary and Outlook

Our Interests and Future Research

@ If you want to solve the exponential problem exactly. ..

@ ...consider using Quantum Monte Carlo: continuous time,
hybridation expansion, ...

@ ...and Density Matrix Renormalization Group

Thanks to: E. Dagotto, L. Dias da Silva, M. Eisenbach, S.
Manmana, I.P. McCulloch, J. A. Riera, and J. Xavier.

B http://www.ornl.gov/~gzl/
@ nttp://arxiv.org/abs/1003.1919

@ nttp://arxiv.org/abs/0902.3185
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Summary and Outlook
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