
0.1. THE DENSITYMATRIX CLASS DensityMatrix.h

0.1 The DensityMatrix Class

This class contains the implementation of the density matrix calculation and
diagonalization for the DMRG algorithm. This is a lazy class, it doesn’t
do much but instead delegates the workto either the |DensityMatrixLocal|
for when there’s only local symmetries, or to the |DensityMatrixSu2| when
there’s local symmetries and SU(2) symmetry.

The file starts with the normal define guards:

"DensityMatrix.h" 1a≡
#ifndef DENSITY_MATRIX_H
#define DENSITY_MATRIX_H

Next come the include files, we need to include Utils.h since it is need for
things like multiplications of vectors, and sorting. Most of this stuff is gonna
end up in PsimagLite eventually, once I get that in place.

"DensityMatrix.h" 1b≡
#include " Utils .h"

Anyway, we need also to include BlockMatrix.h that provides capabilities
for a block matrix. A block matrix is, well, a matrix composed of blocks,
a diagonal matrix as you might call it. Why in hell do you need a block
matrix you might (rightfully) ask? Well, you see, there are symmetries that
block not only the Hamiltonian but also the density matrix, which (probably,
I think, I need to check) has the same symmetries of the Hamiltonian

"DensityMatrix.h" 1c≡
#include "BlockMatrix .h"

Now this class works in conjunction with three more files DensityMatrixBase.h,
DensityMatrixLocal.h, and DensityMatrixSu2.h, as explained in detail
below.

"DensityMatrix.h" ?≡
#include "DensityMatrixLocal .h"
#include "DensityMatrixSu2 .h"

namespace Dmrg {

This is a templated class, and it is templated on 4 templates. RealType is the
types for reals, like double or float. DmrgBasisType is a light Hilbert space
(no operators, only symmetries), whereas DmrgBasisWithOperatorsType is
a, well, a Hilbert space with operators. Finally TargettingType has to do
with how to target states, i.e., the functionality to include this or that state
in the density matrix.

1

0.1. THE DENSITYMATRIX CLASS DensityMatrix.h

"DensityMatrix.h" 1d≡
template<
typename RealType ,
typename DmrgBasisType,
typename DmrgBasisWithOperatorsType ,
typename TargettingType
>
class DensityMatrix {

Now come some typedef that make it easy use types without resorting to
multi-line names for these types. In other words, these are aliases to shorten
things later.

"DensityMatrix.h" 2a≡
enum {EXPAND_SYSTEM = TargettingType : :EXPAND_SYSTEM };

typedef typename DmrgBasisWithOperatorsType : : SparseMatrixType
SparseMatrixType ;

typedef typename TargettingType : : TargetVectorType : : value_type
DensityMatrixElementType ;

typedef BlockMatrix<DensityMatrixElementType ,
psimag : : Matrix<DensityMatrixElementType> > BlockMatrixType ;
typedef typename DmrgBasisType : : FactorsType FactorsType ;
typedef DensityMatrixLocal<RealType ,DmrgBasisType,
DmrgBasisWithOperatorsType , TargettingType>
DensityMatrixLocalType ;

typedef DensityMatrixSu2<RealType ,DmrgBasisType,
DmrgBasisWithOperatorsType , TargettingType>
DensityMatrixSu2Type ;

typedef DensityMatrixBase<RealType ,DmrgBasisType,
DmrgBasisWithOperatorsType , TargettingType>
DensityMatrixBaseType ;

Note the word public below. All public stuff is the functionality that this
class provides.

"DensityMatrix.h" 2b≡
public :
typedef typename BlockMatrixType : : BuildingBlockType
BuildingBlockType ;

OK, we are now ready for the constructor of this class. The constructor
takes 4 arguments. The target object which deals with what states to tar-
get, i.e., to include in the density matrix. Two BasisWithOperators objects,
pBasis and pBasisSummed. Sometimes the system (left block) is a free index
and the environment (right block) is summed over. So, sometimes pBasis
will be the system and pBasisSummed the environment, and other times vice-
versa. Then, there’s pSE, a light Hilbert space object (BasisType), which rep-
resents the superblock(system+environment). Remember that superblock
objects are always light (i.e. do not contain operators) due to memory rea-
sons. The argument direction indicates if we’re expandingthe system or
expanding the environment instead. Finally the verbose variable tells us if
we want to print informational stuff.

2

0.1. THE DENSITYMATRIX CLASS DensityMatrix.h

"DensityMatrix.h" 2c≡
DensityMatrix (
const TargettingType& target ,
const DmrgBasisWithOperatorsType& pBasis ,
const DmrgBasisWithOperatorsType& pBasisSummed,
const DmrgBasisType& pSE,
size_t direction ,
bool debug=false ,
bool verbose=false)

Note the colon that comes here indicating that we’re setting stuff on the
stack. We’re constructing two objects, one to handle local symmetries only,
and another one to handle local and SU(2) symmetries. These objects have
very light constructors that are described in (not sure how to cross refer-
ence with literate programming, need to learn more!!).

"DensityMatrix.h" 2d≡
: densityMatrixLocal_ (target , pBasis ,pBasisSummed,pSE,

direction ,debug, verbose) ,
densityMatrixSu2_ (target , pBasis ,pBasisSummed,pSE,

direction ,debug, verbose)
{

OK so here we need to see if we are using only local symmetries or we’re
also using the SU(2) symmetry. As you can imagine, things are different in
each case. Both DensityMatrixLocal and DensityMatrixSu2 derive from
a common parent class. The trick is to select which one we need and have
the densityMatrixImpl_ pointer point to the correct one.

"DensityMatrix.h" 3a≡
i f (DmrgBasisType : :useSu2Symmetry()) {
densityMatrixImpl_ = &densityMatrixSu2_ ;

} else {
densityMatrixImpl_ = &densityMatrixLocal_ ;

}

Below we initialize the density matrix, which basically computes it. We
delay initializing the actual density matrix class until here. This is because
we only need one type (either local or SU(2)) per run, and initializing both
would be a waste of resources (both CPU and memory). Note, however,
that created both densityMatrixLocal_ and densityMatrixSu2_; but their
creation is light as explained before.

"DensityMatrix.h" 3b≡
densityMatrixImpl_−>in i t (target , pBasis ,pBasisSummed,pSE, direction) ;

}

The operator() function is a public member function that returns the ac-
tual density matrix. What d’you mean by “actual density matrix”, you might
ask? Well, it’s a. . . wait for it. . . matrix, of course, you know like ρij . So,
how do we implement that? Well, we can’t, simplybecause remember that
we need to consider two cases, local and local plus SU(2) symmetries.

3

0.1. THE DENSITYMATRIX CLASS DensityMatrix.h

So, the best we can do here is delegate it to the appropriate class, either
DensityMatrixLocal or DensityMatrixSu2. Remember, however, that we
already set the pointer densityMatrixImpl_ to the right object, so we sim-
ply call its operator() function.

"DensityMatrix.h" 3c≡
BlockMatrixType& operator () ()
{
return densityMatrixImpl_−>operator () () ;

}

The rank function comes below, and returns the rank (as in the number of
rows). I don’t remember why this function is needed at all. Need to check
where it’s used. It seems that having the matrix is enough. Again nothing
can be actually done here, we simply delegate to the appropriate class.

"DensityMatrix.h" 3d≡
size_t rank () { return densityMatrixImpl_−>rank () ; }

These are just checks to see if everything is OK.

"DensityMatrix.h" 4a≡
void check(int direction)
{
return densityMatrixImpl_−>check(direction) ;

}

And more checks to see if everything is OK.

"DensityMatrix.h" 4b≡
void check2(int direction)
{

densityMatrixImpl_−>check2(direction) ;
}

The function diag diagonalizes the density matrix, which, if you remem-
ber, is one of the key steps of the DMRG algorithm. Three arguments are
passed here. First eigs which will be filled with the eigenvalues of the den-
sity matrix. Next jobz which is either ’N’ or ’V’ indicating if we need also
eigenvectors (’V’) or only eigenvalues (’N’). Finally a concurrency object is
also passed that can help with parallelizing this diagonalization operation.
Again, we don’t do much here, just delegate, and it’s some other class’s
problem.

"DensityMatrix.h" 5a≡
template<typename ConcurrencyType>
void diag(std : : vector<RealType>& eigs ,char jobz ,

ConcurrencyType& concurrency)
{
i f (!DmrgBasisType : :useSu2Symmetry()) {
densityMatrixLocal_ . diag (eigs , jobz , concurrency) ;

} else {
densityMatrixSu2_ . diag (eigs , jobz , concurrency) ;

}
}

4

0.1. THE DENSITYMATRIX CLASS DensityMatrix.h

The following statement (see the semicolon at the end) makes the function
operator<< a friend of this class. This function will enable printing this
class for debugging purposes.

"DensityMatrix.h" 5b≡
template<
typename RealType_ ,
typename DmrgBasisType_,
typename DmrgBasisWithOperatorsType_ ,

typename TargettingType_
>
friend std : : ostream& operator<<(std : : ostream& os ,
const DensityMatrix<RealType_ ,DmrgBasisType_,
DmrgBasisWithOperatorsType_ , TargettingType_>&

dm) ;

This class has 3 data memeber, all of them private. We’ve already seen
densityMatrixLocal_ that does the real work for the density matrix when
there’s local symmetries, and also densityMatrixSu2_ that does the real
work when there’s local symmetries and the SU(2) symmetry.As we ex-
plained above, densityMatrixImpl_ is a pointer that points to the correct
object, depending on which symmetries the user chose.

"DensityMatrix.h" 5c≡
private :
DensityMatrixLocalType densityMatrixLocal_ ;
DensityMatrixSu2Type densityMatrixSu2_ ;
DensityMatrixBaseType* densityMatrixImpl_ ;

}; / / class DensityMatrix

Below is a companion function that prints the density matrix object for de-
bugging purposes. Note that we just print the pointer densityMatrixImpl_,
and so, again we’re delegatingall the work to the appropriate class(es).

"DensityMatrix.h" 6≡
template<
typename RealType ,
typename DmrgBasisType,
typename DmrgBasisWithOperatorsType ,
typename TargettingType

>
std : : ostream& operator<<(std : : ostream& os ,

const DensityMatrix<RealType ,DmrgBasisType,
DmrgBasisWithOperatorsType , TargettingType>& dm)

{
os<<(*dm. densityMatrixImpl_) ;
return os ;

}
} / / namespace Dmrg

#endif

And that’s all folks.

5

	The DensityMatrix Class

