0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

0.1 Dynamic Targetting To get Frequency De-
pendent Observables

This class implements the dynamic DMRG algorithm as described in [1].
Note that this class implements the Targetting interface also used by Ground-
StateTargetting (static DMRG) and TimeStepTargetting (for time dependent
DMRG)

Following paper reference [1]], the name dyn-vectors will be used for the
four vector: (i) the ground state |1),,), (i) the vector A|¢;), (iii) the “correc-
tion vector” |Y,), and (iv) the “correction vector” | X 4), as defined in the pa-
per. The last 3 vectors will be stored in the private member targetVectors_,
whereas the first one will be stored in the private member psi_.

"DynamicTargetting.h" 1=
#ifndef DYNAMICTARGETTING H
#define DYNAMICTARGETTING H

#include "Progresslndicator.h"
#include "BLAS.h"

#include "ApplyOperatorLocal.h"
#include "TimeSerializer.h"
#include "DynamicDmrgParams.h"
#include "DynamicFunctional.h"
#include "Minimizer.h"

namespace Dmrg {
theClassHere2

} // namespace

#endif // DYNAMICTARGETTING H

This class is templated on 7 templates, which are:
1. LanczosSolverTemplate, being usually the LanczosSolver class.

2. InternalProductTemplate, being usually the InternalProductOnTheFly
class. This is a very short class that allows to compute the superblock
matrix either on-the-fly or to store it. (by using InternalProductStored).
The latter option is limited to small systems due to memory constraints.

3. WaveFunctionTransformationType is usually the WaveFunctionTransformation
class. The wave function transformation is too long to explain here
but it is a standard computational trick in DMRG, and was introduce
in 1996 by S. White (need to write here the corresponding PRB article
FIXME).

4. ModelType is the model in question. These are classes under the di-
rectory Models.

5. ConcurrenyType is the type to deal with parallelization or lack thereof.

6. IoType is usually the IoSimple class, and deals with writing to disk
the time-vectors produced by this class.

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

7. VectorWithOffsetTemplate is usually the VectorWithOffsets class
that encapsulates the functionality of a vector that is mostly zero ex-
cept for chunks of non-zero numbers at certain offsets. Note that there
is (for efficiency reasons) a VectorWithOffset class that encapsulates
the functionality of a vector with a single chunk. That class is used
in GroundStateTargetting but not here. Why do vectors in chunks
appear here (you might be wondering)? Well, because of symmetries
the vectors are zero mostly everywhere except on the (targetted) sym-
metry sector(s).

(theClassHere 2) =

template<
template<typename, typename, typename> class LanczosSolverTemplate,
template<typename, typename> class InternalProductTemplate,
typename WaveFunctionTransformationType_,
typename ModelType ,
typename ConcurrencyType ,
typename IoType ,
template<typename> class VectorWithOffsetTemplate>
class DynamicTargetting {
public:
publicTypedefs3a
enumsAndConstants3b
constructor4a
publicFunctions6a
private:
privateFunctions9c
privateData4b
}; // class DynamicTargetting

A long series of typedefs follow. Need to explain these maybe (FIXME).

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(publicTypedefs 3a) =

typedef WaveFunctionTransformationType WaveFunctionTransformationType;

typedef ModelType ModelType;

typedef ConcurrencyType ConcurrencyType;

typedef IoType_ IoType;

typedef typename ModelType:: RealType RealType;

typedef std::complex<RealType> ComplexType;

typedef InternalProductTemplate<ComplexType, ModelType> InternalProductType;
typedef typename ModelType:: OperatorsType OperatorsType;

//typedef typename OperatorsType :: SparseMatrixType SparseMatrixType;

typedef typename ModelType : : MyBasisWithOperators BasisWithOperatorsType;

typedef std::vector<ComplexType> ComplexVectorType;

typedef LanczosSolverTemplate<RealType, InternalProductType, ComplexVectorType> LanczosSolverType;
//typedef std::vector<RealType> VectorType;

typedef psimag::Matrix<ComplexType> ComplexMatrixType;

//typedef typename LanczosSolverType::TridiagonalMatrixType TridiagonalMatrixType ;
typedef typename BasisWithOperatorsType::OperatorType OperatorType;

typedef typename BasisWithOperatorsType::BasisType BasisType;

typedef DynamicDmrgParams<ModelType> TargettingParamsType;

typedef typename BasisType::BlockType BlockType;

typedef VectorWithOffsetTemplate<ComplexType> VectorWithOffsetType;

typedef typename VectorWithOffsetType::VectorType VectorType;

typedef ComplexVectorType TargetVectorType;

typedef BlockMatrix<ComplexType, ComplexMatrixType> ComplexBlockMatrixType;

typedef ApplyOperatorLocal<BasisWithOperatorsType, VectorWithOffsetType, TargetVectorType> ApplyOperatorType;
typedef TimeSerializer<RealType, VectorWithOffsetType> TimeSerializerType;

And now a few enums and other constants. The first refers to the 4 steps in
which the time-step algorithm can be.

1. DISABLED Time-step-targetting is disabled if we are not computing
any time-dependent operator yet (like when we’re in the infinite al-
gorithm)or if the user specified TSTLoops with numbers greater than
zero, those numbers indicate the loops that must pass before time-
dependent observables are computed.

2. OPERATOR In this stage we’re applying an operator

3. WFT NOADVANCE In this stage we’re adavancing in space with the
wave function transformation (WFT) but not advancing in frequency.

4. WFT NOADVANCE In this stage we’re adavancing in space and fe-
quency

(enumsAndConstants 3b) =

emumm {DISABLED, OPERATOR, CONVERGING} ;

emum { EXPAND ENVIRON=WaveFunctionTransformationType : : EXPAND ENVIRON,
EXPAND SYSTEM=WaveFunctionTransformationType : : EXPAND SYSTEM,
INFINITE=WaveFunctionTransformationType : : INFINITE } ;

static const size t parallelRank = 0; // DYNT needs to support concurrency FIXME

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

Now comes the constructor which takes 6 arguments. The first 3 arguments

are the system (left-block), environment (right-block), and superblock (sys-

tem + environment). As usual, the first 2 are heavy objects—with operators—

, and the superblock is light. The 4th argument is the model object. The 5th

argument is a TargettingStructureType object which is a TargettingStructureParms

object A structure is just a bunch of data bundled together, and you can see

this in the file TargetStructureParams.h. The last argument is a WaveFunctionTransformation
object. More info about this class is in WaveFunctionTransformation.h.

(constructor4a) =

DynamicTargetting (
const BasisWithOperatorsType& basisS,
const BasisWithOperatorsType& basisE,
const BasisType& basisSE,
const ModelType& model,
const TargettingParamsType& tstStruct,
const WaveFunctionTransformationType& wft)
stackInitialization5a
constructorBody5b

Now let us look at the private data of this class:

(privateData 4b) =

std::vector<size t> stage_;

VectorWithOffsetType psi_;

const BasisWithOperatorsType& basisS_;

const BasisWithOperatorsType& basisE_;

const BasisType& basisSE_;

const ModelType& model ;

const TargettingParamsType& tstStruct_;

const WaveFunctionTransformationType& waveFunctionTransformation_;
Progressindicator progress ;

RealType currentOmega_;

std :: vector<VectorWithOffsetType> targetVectors_;
std::vector<RealType> weight ;

RealType gsWeight ;

typename IoType::Out io_;

ApplyOperatorType applyOpLocal_;

Now we get to the stack initialization of this object. We said before that the
algorithm could be in 4 stages. In reality, there is not a stage for the full
algorithm but there’s a stage for each operator to be applied (like holon and
then doublon).These operators are specified by the user in the input file in
TSPSites. All stages are set to DISABLED at the beginning. We make refer-
ence copies to the bases for system (basisS), environment (basisE), and su-
perblock (basisSE). We also make a reference copy for the model and the tst
t(ime)s(tep)t(argetting)Struct(ure), and of the waveFunctionTransformation
object. We initialize the progress object that helps with printing progress
to the terminal. The frequency that we are calculating here needs to be

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

described FIXME. We will think this to do one frequency at a time, as sug-
gested by the reference above. Multiple frequencies should be parallelized,
and we need to provide a frequency range and stepping in the input file
(FIXME) The weight, which is a vector of weights, for each target state
(except possibly the ground state) is set to 4 vectors. Next an io or in-
put/output object is constructed. This is needed to dump the time-vectors
to disk since we don’t do computations in-situ here.All right, we may do
something in situ just to check. The applyLocal operator described before
is also initalized on the stack.

(stacklInitialization 5a) =

stage (tstStruct.sites.size(),DISABLED),
basisS_(basisS),

basisE_(basisE),

basisSE_(basisSE),

model (model),

tstStruct (tstStruct),
waveFunctionTransformation (wft),
progress_("DynamicTargetting",0),
currentOmega (tstStruct_ .omega),
targetVectors (3),

weight (targetVectors_.size()),
io_(tstStruct_.filename, parallelRank),
applyOpLocal (basisS, basisE, basisSE)

The body of the constructor follows:

(constructorBody 5b) =

{
if (!wft.isEnabled()) throw std::runtime error("_DynamicTargetting,
"needs_an_enabled,_wft\n");
RealType sum = 0;
size t n = weight .size();
for (size t i=0;i<n;i++) {
weight [i] = 1.0/(n+1);
sum += weight [i];

}

gsWeight =1.0—sum;

sum += gsWeight ;

if (fabs(sum—1.0)>1e—5) throw std::runtime_error("Weights_don’t_amount_to_one\n");
printHeader();

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(publicFunctions 6a) =

weight6b

gsWeight6c
normSquared6d
setGs7a
operatorBracket7b
gs7c
includeGroundStage7d
size7e
operatorParens8a
evolve8b
initialGuess9a
BasisGetFunctions9b

The public member function weight returns the weight of target state i.
This is needed for the DensityMatrix class to be able weight the states
properly. Note that it throws if you ask for weights of dyn-vectors when all
stages are disabled, since this would be an error.

(weight 6b) =
RealType weight(size t i) const

if (allStages(DISABLED)) throw std::runtime error("TST:_What_are _you_doing_here?\n");
return weight [i];

//return 1.0;

}

The public member function gsWeight returns the weight of the ground
state. During the disabled stages it is 1 since there are no other vectors to
target.
(gsWeight 6c) =

RealType gsWeight() const

if (allStages(DISABLED)) return 1.0;
return gsWeight ;
}

This member function returns the squared norm of dynamic vector number
1. (Do we really need this function?? (FIXME))
(normSquared 6d) =

RealType normSquared(size t i) const

// call to mult will conjugate one of the vector
return real(multiply (targetVectors [i],targetVectors [i]));

I

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

The function below sets the ground state to whatever is passed in v. The
basis to which this state belongs need be passed in someBasis because of
the chunking of this vector.

(setGs 7a) =

template<typename SomeBasisType>

void setGs(const std::vector<TargetVectorType>& v,
const SomeBasisType& someBasis)

{

psi_.set(v,someBasis);

}

The functions below returns the i—th element of the ground state psi.
(operatorBracket 7b) =
const ComplexType& operator[](size t i) const { return psi [i]; }

ComplexType& operator[](size t i) { return psi [i]; }

The function below returns the full ground state vector as a vector with
offset:

(gs7c) =
const VectorWithOffsetType& gs() const { return psi ; }

The function below tells if the ground state will be included in the density
matrix. If using this class it will always be.

(includeGroundStage 7d) =

bool includeGroundStage() const {return true; }

How many time vectors does the DensityMatrix need to include, excepting
the ground state? The function below tells. Note that when all stages are
disabled no time vectors are included.

(size 7e) =

size_t size() const

{

if (allStages(DISABLED)) return O;
return targetVectors .size();

}

The function below returns the full time vector number ¢ as a vector with
offsets:

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(operatorParens 8a) =

const VectorWithOffsetType& operator()(size t i) const
{

return targetVectors [i];

I

This function provides a hook to (possibly) start the computation of dynamic
observables. Five arguments are passed. First F'g, the ground state energy,
then the direction of expansion (system or environment), then the block
being currently grown or shrunk, then the loopNumber of the finite algo-
rithm, and finally a flag needsPrinting that indicates if dyn-vectors need to
be printed to disk for post-processing or not.

Here the main work is done two functions, a different function evolve is
called to either WFT transform the vector or to apply the operators to the
ground state.

This function call other functions. We’ll continue linearly describing each
one in order of appearance.

(evolve 8b) =

void evolve (RealType Eg, size_t direction,const BlockType& block,
size t loopNumber, bool needsPrinting)

{

size t count =0;

VectorWithOffsetType phiOld = psi_;

VectorWithOffsetType phiNew;

size_t max = tstStruct_.sites.size();

if (noStagels(DISABLED)) max = 1;

// Loop over each operator that needs to be applied

// in turn to the g.s.

for (size t i=0;i<max;i++) {

count += evolve (i,phiNew, phiOld, Eg, direction , block,loopNumber, max—1);
phiOld = phiNew;

}

if (count==0) {
// always print to keep observer driver in sync
if (needsPrinting) {
zeroOutVectors ();
printVectors(block);
}

return;
}
ComplexType val = calcDynVectors (Eg, phiNew, direction);

cocoon(val, direction,block); // in—situ

if (needsPrinting) printVectors(block); // for post—processing

I

The function below provides an initial guess for the Lanczos vector. Tradi-
tionally, when DMRG is only targetting the ground state this is a standard

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

procedure (see file GroundStateTargetting). Here, when DynamicTargetting,
we need be concerned with all target states and we the stages of the applica-
tion of operators. When all stages are disabled then the initial guess is just
delegated to one call of the WFT’ssetInitialVector function. When stages
are advancing we need to weight each target wave-function-transformed
state with the appropriate weights:

(initialGuess 9a) =

void initialGuess (VectorWithOffsetType& v) const
{
waveFunctionTransformation .setInitialVector(v,psi_,basisS_,basisE_,basisSE_);
if (!allStages(CONVERGING)) return;
std :: vector<VectorWithOffsetType> vv(targetVectors .size());
for (size t i=0;i<targetVectors .size ();i++) {
waveFunctionTransformation .setlInitialVector(vv[il],
targetVectors [i],basisS_,basisE_,basisSE);
if (norm(vv[i])<le—6) continue;
VectorWithOffsetType w= weight [i]xvv[i];
vV +=w;
}
}

Finally, the following 3 member public functions return the superblock ob-
ject, the system (left-block) or the environment objects, or rather, the refer-
ences held by this class.

(BasisGetFunctions 9b) =

const BasisType& basisSE() const { return basisSE ; }
const BasisWithOperatorsType& basisS() const { return basisS ; }

const BasisWithOperatorsType& basisE() const { return basisE ; }

This completes the list of public functions. What remains are private (i.e.
non-exported) code used only by this class. We’ll visit one function at a time.

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(privateFunctions 9c) =

evolvePrivatelOa
computephillc
cocoonl2b
checkOrderOfSites13a
allStages13b
noStagels13c
getStagel4a
calcDynVectors14b
minimizeFunctionall5a
minimizeFunctional215b
obtainXA15c
obtainXA216a
guessPhiSectors16b
zeroOutVectors16c¢
printVectorsl7a
printHeader17b

test?
areAllTargetsSensible?
isThisTargetSensible?

The below function is called from the evolve above and, if appropriate,
applies operator i to phiOld storing the result in phiNew. In some cases it
just advances, through the WFT, state phi0ld into phiNew. Let’s look at the
algorithm in detail.

(evolvePrivate 10a) =

size t evolve(
size t i,
VectorWithOffsetType& phiNew,
VectorWithOffsetType& phiOld,
RealType Eg,
size_t direction,
const BlockType& block,
size t loopNumber,
size t lastl)

checkIfWeAreInTheRightLoop10b
checkIfAddedBlockIsSizeOnel0c
checkStage10d
checkOperatorlla
computeAtimesPsillb

return 1;

}

If we have not yet reached the finite loop that the user specified as a starting
loop, or if we are in the infinite algorithm phase, then we do nothing:

(checkIfWeAreInTheRightLoop 10b) =

if (tstStruct_.startingLoops[i]>loopNumber || direction==INFINITE) return O;

Currently this class can only deal with a DMRG algorithm that uses single
site blocks for growth and shrinkage:

10

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(checkIfAddedBlockIsSizeOne 10c) =

if (block.size()!=1) throw
std::runtime_error("DynamicTargetting::evolve (...):"

"_blocks_of_size_!=_1_are_unsupported_(sorry)\n");
size_t site = block[0];

If the stage is disabled and this is not the site on which the user specified,
through tstStruct_.sites, to apply the operator, then do nothing:

(checkStage 10d) =

if (site != tstStruct .sites[i] &% stage [i]==DISABLED) return 0;

If we are on the site specified by the user to apply the operator, and we were
disabled before, change the stage to OPERATOR. Otherwise, do not apply the
operator, just advance in space one site using the WFT. We also check the
order in which sites were specified by the user against the order in which
sites are presented to us by the DMRG sweeping. This is explained below
under function checkOrder

(checkOperator 11a) =

if (site == tstStruct_.sites[i] &% stage_[i]==DISABLED) stage_[i]=OPERATOR;
else stage_ [i]=CONVERGING;
if (stage_[i] == OPERATOR) checkOrder(i);

We now print some progress. Up to now, we simply set the stage but we
are ready to apply the operator to the state phiOld. We delegate that to
function computePhi that will be explain below.
(computeAtimesPsi 11b) =
std :: ostringstream msg;
msg<<"Evolving, stage="<<getStage(i)<<"_site="<<site<<"_loopNumber="<<loopNumber;
msg<<"_Eg="<<Eg;

progress_. printline (msg, std :: cout);

// phi = A|psi>
computePhi(i,phiNew, phiOld, direction);

Let us look at computephi, the next private function.

11

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(computephi 11c) =

void computePhi(size t i, VectorWithOffsetType& phiNew,
VectorWithOffsetType& phiOld, size_t systemOrEnviron)
{
if (stage_[i]==OPERATOR) {
computePhiOperatorl1ld
} else if (stage [i]== CONVERGING) {
computePhiAdvancel2a
} else {
throw std::runtime_error("It’s_5_am,_do_you_know_what_line "
" _your_code_is_exec—ing?\n");
}
}

If we’re in the stage of applying operator ¢, then we call applyLocal (see
function operator() in file ApplyLocalOperator.h) to apply this operator
to state phi0ld and store the result in phiNew.

(computePhiOperator 11d) =

std:: ostringstream msg;

msg<<"I 'm_applying, _a_local_operator_now";

progress_.printline (msg, std:: cout);

FermionSign fs(basisS ,tstStruct .electrons);

applyOpLocal (phiNew, phiOld, tstStruct .aOperators[i],fs, systemOrEnviron);
RealType norma = norm(phiNew);

if (norma==0) throw std::runtime_error("Nomm_of_phi_is_zero\n");

//std : : cerr<<'Nomm of phi="<<norma<<" when i="<<i<<"\n";

Else we need to advance in space with the WFT. In principle, to do this we
just call function setInitialVector in file WaveFunctionTransformation.h
as you can see below. There is, however, a slight complication, in that the
WaveFunctionTransformation class expects to know which sectors in the
resulting vector (phiNew) will turn out to be non-zero. So, we need to ei-
ther guess which sectors will be non-zero by calling guessPhiSectors as
described below, or just populate all sectors with and then “collapse” the
non-zero sectors for efficiency.

(computePhiAdvance 12a) =

std :: ostringstream msg;
msg<<"I'm_calling_the WFT_now";
progress_.printline (msg, std:: cout);

if (tstStruct .aOperators.size()==1) guessPhiSectors(phiNew, i, systemOrEnviron);
else phiNew.populateSectors(basisSE);

// OK, now that we got the partition number right, let’s wft:
waveFunctionTransformation .setInitialVector (phiNew, targetVectors [0],
basisS_,basisE_,basisSE_); // generalize for su(2)

phiNew. collapseSectors ();

12

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

The cocoon function measures the density of all time vectors in situ. This is
done only for debugging purposes, and uses the function test.

(cocoon 12b) =

void cocoon(ComplexType& val,size t direction,const BlockType& block) const
{
size_t site = block[0];
std ::cerr<<"————&&&k Cocoon_output_starts\n";
test(psi_, psi_, direction, "<PSI|A|PSI>",site);
std :: cerr<<"OMEGA ,"<<currentOmega <<" _ '<<imag(val)<<" '"<<real(val)<<" '<<site<<"\n";
for (size t j=0;j<targetVectors .size ();j++) {
std::string s = "<P"+utils::ttos(j)+"|A|P"+utils:: ttos(j)+">";
test(targetVectors [j],targetVectors [0],direction,s, site);
}

std :: cerr<<" &8k Cocoon_output_ends\n";

}

If we see site[i] then we need to make sure we’ve seen all sites site[j] for
j <i.In other words, the order in which the user specifies the affected sites
for the application of operators needs to be the same as the order in which
the DMRG sweeping process encounters those sites. Else we throw.

(checkOrderOfSites 13a) =

void checkOrder(size t i) const
{
if (i==0) return;
for (size t j=0;j<i;j++) {
if (stage [j] == DISABLED) {
std::string s ="TST::_Seeing,_dynamic_site_"+utils ::ttos(tstStruct_.sites[i]);
s =s + "_before_having _seen";
s =s + " _site_"+utils::ttos(j);
s = s +"._Please_order_your_dynamic_sites_in_order_of_appearance.\n";
throw std::runtime error(s);

The little function below returns true if the stages of all the operators to
be applied (or of all the sites on which those operators are to be applied)
is equal to x. Else it returns false. Valid stages were noted before (cross
reference here FIXME).

(allStages 13b) =

bool allStages(size_t x) const

{

for (size t i=0;i<stage .size();i++)
if (stage [i]'=x) return false;
return true;

}

The function below returns true if no stage is z, else false.

13

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(noStagels 13c) =

bool noStagels(size t x) const

{

for (size_t i=0;i<stage_ .size();i++)
if (stage_[i]==x) return false;
return true;

}

This function returns a string (human-readable) representation of the stage
given by 1.
(getStage 14a) =

std::string getStage(size t i) const
{
switch (stage [i]) {
case DISABLED:
return "Disabled";
break;
case OPERATOR:
return "Applying _operator_for_the_first_time";
break;
case CONVERGING:
return "Converging, DDMRG";
break;
}
return "undefined";

i

The below function computes steps 3 and 4 of the algorithm described in
page 3 of reference [1]. The incoming arguments are the ground state
energy Eg, the vector phi or |¢) which is |¢) = A|yys), and the direction
of growth specified in systemOrEnviron. Note that phi will be stored in
targetVectors_[0], |Y4) in targetVectors_[1], | X4) in targetVectors_[2].

(calcDynVectors 14b) =

ComplexType calcDynVectors (
RealType Eg,
const VectorWithOffsetType& phi,
size t systemOrEnviron)
{
RealType retlm = minimizeFunctional(targetVectors [1],Eg, phi, systemOrEnviron);
obtainXA (targetVectors [2],targetVectors [1],Eg);
RealType retRe = —real(targetVectors [2]+phi)/M PI; // Eq.~(12a)
targetVectors_[0] = phi;
areAllTargetsSensible ();
return ComplexType(retRe,retlm);

After calcDynVectors is called, psiMin contains |Y4), as explained in Eq. (15).
From Eq. (16), iaw contains I4(w).

Below we minimize Eq. (14) of reference [1], and obtain ,,;, which is
stored in psiMin.

14

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(minimizeFunctional 15a) =

RealType minimizeFunctional(
VectorWithOffsetType& psiMin,
RealType Eg,
const VectorWithOffsetType&phi,
size t systemOrEnviron)

{

VectorWithOffsetType phiCopy = phi;

psiMin = phi;

RealType ret = 0;

for (size_t i=0;i<phiCopy.sectors();i++) {
VectorType sv;
size t ii = phiCopy.sector(i);
psiMin. extract(sv, ii);
if (sv.size()==0) throw std::runtime error("Non—zero_sector,_is zero!\n");
ret += minimizeFunctional(sv,Eg, phi, ii);
psiMin. setDatalnSector(sv, ii);

}

return ret;

I

The function computes the minimum of the W functional and returns the
complex number Im[G(w + in)]. Note that the return values use (16).

15

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(minimizeFunctional2 15b) =

RealType minimizeFunctional (VectorType& sv,RealType Eg,const VectorWithOffsetType& phi, size t ind)
{

size_t p = basisSE_.findPartitionNumber(phi. offset(ind));

typename ModelType : : ModelHelperType modelHelper(p, basisSE_, basisS_,basisE_,model_. orbitals ());
typedef typename LanczosSolverType::LanczosMatrixType LanczosMatrixType;

LanczosMatrixType h(&model ,&modelHelper);

typedef DynamicFunctional<RealType, LanczosMatrixType, VectorType> DynamicFunctionalType;
VectorType aVector;

phi.extract(aVector,ind);

DynamicFunctionalType wFunctional(h,aVector, currentOmega_,Eg, tstStruct_.eta);

size_t maxlter = 1000;

PsimagLite : : Minimizer<RealType, DynamicFunctionalType> min(wFunctional , maxIter);
std:: vector<RealType> svReal(2#sv.size ());

//wFunctional. packComplexToReal(svReal, sv);

for (size t i=0;i<svReal.size();i++) svReal[i]=drand48();

RealType norma = std::norm(svReal);

for (size_t i=0;i<svReal.size();i++) svReal[i]/=norma;

int iter = —1;
RealType delta = le—3;
RealType tolerance = le—3;
size_t counter = 0;
while (iter<0 &% counter<100) {
iter = min.simplex(svReal, delta, tolerance);
delta /= 2;
tolerance *= 1.2;
counter++;
}
if (iter<0) {
std:: cerr<<"delta="<<delta<<"_tol="<<tolerance<<"\n";
throw std::runtime_error
("DynTargetting : : minimizeFunctional (...) : No_minimum,_found\n");
}
wFunctional . packRealToComplex(sv, svReal);
return —wFunctional(svReal)/(M_PIxtstStruct_.eta);

}

The function below implements Eq. (11) of reference [1]].

(obtainXA 15¢) =

void obtainXA (
VectorWithOffsetType& xa,
const VectorWithOffsetType& ya,
RealType Eg)

{

Xa = ya;

for (size_t i=0;i<ya.sectors();i++) {
size_t ii = ya.sector(i);
obtainXA(xa,Eg,ya, ii);

}

}

16

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(obtainXA2 16a) =

void obtainXA (VectorWithOffsetType& xa, RealType Eg,const VectorWithOffsetType& ya, size t i)
{

size t p = basisSE_.findPartitionNumber(ya. offset(i));

typename ModelType : : ModelHelperType modelHelper(p, basisSE_, basisS_,basisE_,model_. orbitals ());
typedef typename LanczosSolverType::LanczosMatrixType LanczosMatrixType;

LanczosMatrixType h(&model ,&modelHelper);

VectorType yaThisSector;

ya.extract(yaThisSector,i);

VectorType sv(yaThisSector.size(),0.0);

h.matrixVectorProduct(sv,yaThisSector); // sv = H * yaThisSector

RealType factor = (Eg+currentOmega);

sv —= (yaThisSector * factor);

sv x= (1/tstStruct .eta);

xa.setDataInSector(sv,i);

void areAllTargetsSensible

As explained above (cross reference here), we need to know before ap-
plying an operator were the non-zero sectors are going to be. The operator
(think ¢') does not necessarily have the symmetry of the Hamiltonian, so
non-zero sectors of the original vector are not—in general—going to coin-
cide with the non-zero sectors of the result vector, neither will the empty
sectors be the same. Note that using simpy

size_t partition = targetVectors_[0].findPartition(basisSE_);

doesn’t work, since targetVectors_[0] is stale at this pointThis function
should not be called when more than one operator will be applied.

(guessPhiSectors 16b) =

void guessPhiSectors(VectorWithOffsetType& phi, size t i,size t systemOrEnviron)
{
FermionSign fs(basisS_, tstStruct_.electrons);
if (allStages(CONVERGING)) {
VectorWithOffsetType tmpVector = psi ;
for (size t j=0;j<tstStruct .aOperators.size();j++) {
applyOpLocal (phi,tmpVector, tstStruct .aOperators[j],fs,
systemOrEnviron) ;
tmpVector = phi;
}
return;
}
applyOpLocal_(phi, psi_, tstStruct_.aOperators[i],fs,
systemOrEnviron);

}

The function below makes all target vectors empty:

17

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT
OBSERVABLES

(zeroOutVectors 16c) =

void zeroOutVectors ()

{
for (size_t i=0;i<targetVectors_.size ();i++)
targetVectors_[i].resize (basisSE_.size ());

}

The function below prints all target vectors to disk, using the TimeSerializer
class.

(printVectors 17a) =

void printVectors(const std::vector<size t>& block)

{
if (block.size()!=1) throw std::runtime_error(
"DynamicTargetting,_only_supports,_blocks_of_size_1\n");

TimeSerializerType ts(currentOmega ,block[0],targetVectors);
ts.save(io);

}

Print header to disk to index the time vectors. This indexing wil lbe used at
postprocessing.

(printHeader 17b) =

void printHeader ()

{

io_.print(tstStruct);

std::string label = "omega";

std::string s = "Omega=" + utils::ttos(currentOmega);
io_.printline(s);

label = "weights";

io_.printVector(weight_,label);

s = "GsWeight="+utils :: ttos (gsWeight);
io_.printline(s);

The test function below performs a measurement in situ. This is mainly for
testing purposes, since measurements are better done, post-processing.

18

0.1. DYNAMIC TARGETTING TO GET FREQUENCY DEPENDENT

OBSERVABLES

(test?) =

void test(
const VectorWithOffsetType& srcl,
const VectorWithOffsetType& src2,
size_t systemOrEnviron,
const std::string& label,
size t site) const
{
VectorWithOffsetType dest;
OperatorType A = tstStruct_.aOperators[0];
CrsMatrix<ComplexType> tmpC(model .getOperator(“c",0,0));
/*CrsMatrix<ComplexType> tmpCt;
transposeConjugate (tmpCt, tmpC) ;
multiply (A. data, tmpCt, tmpC) ; */
A.fermionSign = 1;
A.data.makeDiagonal (tmpC.rank(),1.0);
FermionSign fs(basisS_, tstStruct_.electrons);
applyOpLocal (dest,srcl,A,fs,systemOrEnviron);

ComplexType sum = 0;
for (size t ii=0;ii<dest.sectors();ii++) {
size t i = dest.sector(ii);
size t offsetl = dest.offset(i);
for (size t jj=0;jj<src2.sectors();jj++) {
size_t j = src2.sector(jj);
size_t offset2 = src2.offset(j);
if (i!=j) continue; //throw std::runtime error("Not same sector\n");
for (size_t k=0;k<dest.effectiveSize (i);k++)
sumt= dest[k+offsetl] * conj(src2[k+offset2]);
}
}
std:: cerr<<site<<"_'<<sum<<" '"<<" '<<currentOmega_ ;
std:: cerr<<" '"<<label<<std::norm(srcl)<<"_"<<std::norm(src2)<<" _'"<<std

}

The function below is just for checking:

(areAllTargetsSensible ?) =

void areAllTargetsSensible () const

{

for (size_t i=0;i<targetVectors_.size ();i++)
isThisTargetSensible(i);

}

(isThisTargetSensible ?) =

void isThisTargetSensible(size t i) const

{

RealType norma = std::norm(targetVectors [i]);

if (norma<le—6) throw std::runtime error("Norma_is_zero\n");

}

19

::norm(dest)<<"\n";

Bibliography

[1] E. Jeckelmann. Phys. Rev. B, 66:045114, 2002.

20

	Dynamic Targetting To get Frequency Dependent Observables

