
LO
C
A
L
C
O
PY

DMRG++ v3 Manual

Manual Version: October 6, 2015
Oak Ridge, 2014

LO
C
A
L
C
O
PY

This is work in progress 2

LO
C
A
L
C
O
PY

Gonzalo Alvarez
Nanomaterials 吀�eory Institute
Oak Ridge National Laboratory

Oak Ridge, TN 37831
October 6, 2015

DISCLAIMER

THE SOFTWARE IS SUPPLIED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER, CONTRIBUTORS, UNITED STATES GOVERNMENT,
OR THE UNITED STATES DEPARTMENT OF ENERGY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR THE COPYRIGHT OWNER, NOR ANY OF THEIR EMPLOYEES, REPRESENTS THAT
THE USE OF ANY INFORMATION, DATA, APPARATUS, PRODUCT, OR PROCESS DISCLOSED WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

Copyright ©2009,
UT-Ba琀�elle, LLC
All rights reserved

LO
C
A
L
C
O
PY

This is work in progress 2

LO
C
A
L
C
O
PY

Contents

1 儀�ick Start 7
1.1 Licensing . 7
1.2 DISCLAIMER . 7
1.3 How To Cite 吀�is Work . 8
1.4 Code Integrity . 9
1.5 Building and Running DMRG++ . 9

1.5.1 Required So昀�ware . 9
1.5.2 Building DMRG++ . 9
1.5.3 Running DMRG++ . 9

2 Input 11
2.1 Running DMRG++ . 11
2.2 SolverOptions . 11
2.3 Geometry Input . 13
2.4 Model Input . 13
2.5 DMRG Solver parameters . 13

2.5.1 Finite Loops . 14
2.5.2 Enabling finite loops . 14
2.5.3 Example of a Finite loops line in the input file . 14
2.5.4 吀�e third number in the triplet . 15
2.5.5 Caveats and Troubleshooting . 15

3 Output 17
3.1 Standard Output and Error . 17
3.2 In-situ measurements . 17
3.3 吀�e Observer Driver . 19
3.4 吀�e Disk Stacks . 19
3.5 吀�e W昀� Data Files . 19
3.6 Signals . 19

3.6.1 SIGUSR1 . 19

4 Developer's Guide 21
4.1 Main Driver . 21
4.2 DMRG Engine . 21

4.2.1 DMRG Algorithm . 21

3

LO
C
A
L
C
O
PY

CONTENTS

4.2.2 Driver Program . 22
4.2.3 DmrgSolver and 吀�e ``Infinite'' DMRG Algorithm 23
4.2.4 Finite Algorithm . 24

4.3 Hilbert Space Basis I: DmrgBasis and Symmetries . 24
4.3.1 Local Symmetries . 24
4.3.2 Product of Spaces . 25
4.3.3 Le昀�, Right, and Super . 26
4.3.4 SU(2) Symmetry . 27

4.4 Hilbert Space Basis II: DmrgBasisWithOperators . 27
4.4.1 Outer Product of Operators . 27
4.4.2 Truncation . 28
4.4.3 Lanczos Solver . 29

4.5 Model Interface . 30
4.5.1 Abstract Interface . 30
4.5.2 Heisenberg Model . 30
4.5.3 One-Orbital Hubbard Model . 30
4.5.4 Many-Orbital Hubbard Model . 30
4.5.5 t-J model . 30

4.6 Geometry Interface . 30
4.6.1 Abstract Interface . 30
4.6.2 One Dimensional Chains . 30
4.6.3 Ladders . 30

4.7 Concurrency Interface: Code Parallelization . 30
4.7.1 Abstract Interface . 30
4.7.2 MPI . 31
4.7.3 Pthreads . 31
4.7.4 CUDA . 31

4.8 Input and Output . 31
4.8.1 Input System . 31
4.8.2 DiskStack . 31
4.8.3 Program Output . 31
4.8.4 Test Suite . 31

4.9 Optimizations . 31
4.9.1 Wave Function Transformation . 31
4.9.2 SU(2) Reduced Operators . 32
4.9.3 Checkpointing . 32
4.9.4 Distributed Parallelization . 32
4.9.5 Shared-memory Parallelization . 32

4.10 Static Observables . 32
4.10.1 Ground State Energy and Error . 33
4.10.2 Static Correlations . 33
4.10.3 Observables Driver . 33

4.11 Time Evolution . 33
4.11.1 Time Evolution Input . 33
4.11.2 Operator Input . 33

This is work in progress 4

LO
C
A
L
C
O
PY

CONTENTS

h琀�p://commons.wikimedia.org/wiki/File:Under_construction_icon-blue.svg

This is work in progress 5

LO
C
A
L
C
O
PY

CONTENTS

This is work in progress 6

LO
C
A
L
C
O
PY

Chapter 1

儀�ick Start

1.1 Licensing

吀�e full so昀�ware license for DMRG++ version 2.0.0 can be found in file LICENSE in the root directory of
the code. DMRG++ is a free and open source implementation of the DMRG algorithm. You are welcomed to
use it and publish data obtained with DMRG++. If you do, please cite this work (see next subsection).

1.2 DISCLAIMER

THE SOFTWARE IS SUPPLIED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER, CONTRIBUTORS, UNITED STATES GOVERNMENT,
OR THE UNITED STATES DEPARTMENT OF ENERGY BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED
STATES DEPARTMENT OF ENERGY, NOR THE COPYRIGHT OWNER, NOR
ANY OF THEIR EMPLOYEES, REPRESENTS THAT THE USE OF ANY
INFORMATION, DATA, APPARATUS, PRODUCT, OR PROCESS

7

LO
C
A
L
C
O
PY

CHAPTER 1. QUICK START

DISCLOSED WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

1.3 How To Cite 吀�is Work

@article{re:alvarez0209,
author="G. Alvarez",
title="The Density Matrix Renormalization Group for
Strongly Correlated Electron Systems: A Generic Implementation",
journal="Computer Physics Communications",
volume="180",
pages="1572-1578",
year="2009"}

@article{re:alvarez0310,
author="G. Alvarez",
title="Implementation of the SU(2) Hamiltonian
Symmetry for the DMRG Algorithm",
journal="Computer Physics Communications",
volume="183",
pages="2226-2232",
year="2012"}

@article{re:alvarez0311,
author="G. Alvarez and L. G. G. V. Dias da Silva and
E. Ponce and E. Dagotto",
title="Time Evolution with the DMRG Algorithm:
A Generic Implementation
for Strongly Correlated Electronic Systems",
journal="Phys. Rev. E",
volume="84",
pages="056706",
year="2011"}

@article{re:alvarez0713,
author="G. Alvarez",
title="Production of minimally entangled typical thermal states
with the Krylov-space approach",
journal="Phys. Rev. B",
volume="87",
pages="245130",
year="2013"}

And also:
@article{re:alvarez08,

This is work in progress 8

LO
C
A
L
C
O
PY

1.4. CODE INTEGRITY

re:webDmrgPlusPlus,
Author = {G. Alvarez},
Title = {DMRG++ Website},
Publisher = {\\url{http://www.ornl.gov/~gz1/dmrgPlusPlus}} }

1.4 Code Integrity
Hash of the latest commit is also posted at

h琀�ps://web.ornl.gov/ gz1/hashes.html
Latest commit should always be signed. Keys at h琀�ps://web.ornl.gov/ gz1/keys.html

1.5 Building and Running DMRG++

1.5.1 Required So昀�ware

- Item GNU C++
- Item (required) 吀�e LAPACK library.
吀�e configure.pl script will ask for the LDFLAGS variable to pass to the compiler/linker. If the linux

platform was chosen the default/suggested LDFLAGS will include -llapack. If the osx platform was chosen
the default/suggested LDFLAGS will include -framework Accelerate. For other platforms the appropriate
linker flags must be given. More information on LAPACK is at h琀�p://netlib.org/lapack/

- Item (required) PsimagLite.
吀�is is here h琀�ps://github.com/g1257/PsimagLite/. You can dogit clone https://github.com/g1257/PsimagLite.git

in a separate directory outside of the DMRG++ distribution. `configure.pl` will ask you where you put it.
- Item (optional) make or gmake (only needed to use the Makefile)
- Item (optional) perl (only needed to run the configure.pl script)

1.5.2 Building DMRG++

cd PsimagLite/lib
perl configure.pl
(you may now edit Config.make)
make
cd ../../
cd dmrgpp/src
perl configure.pl
(you may now edit Config.make)
make

1.5.3 Running DMRG++

./dmrg -f input.inp
Sample input files can be found under TestSuite/inputs/.

This is work in progress 9

LO
C
A
L
C
O
PY

CHAPTER 1. QUICK START

configure.pl creates the Makefile according to preferences in the file Config.make. If
Config.make does not exist,configure.pl copiesConfig.make.sample intoConfig.make,
but if Config.make exists, configure.pl will not overwrite it.

This is work in progress 10

LO
C
A
L
C
O
PY

Chapter 2

Input

2.1 Running DMRG++
吀�ere is a single input file that is passed as the argument to -f, like so

./dmrg -f input.inp.

-f [Mandatory, String] Input to use.

-p [Optional, Integer] Digits of precision for printing.

-o [Optional, String] What to measure in-situ

-l [Optional, String] Without this option std::cout is redirected to a file. 吀�is option with the string ``?''
prints name of such log file. 吀�is option with the string ``-'' writes std::cout to terminal. In other
cases, string is the name of the file to redirect std::cout to.

-k [Optional] Keep untar files

Examples of input files can be found under TestSuite/inputs/ 吀�ere are three kinds of parame-
ters in the input file: (i) model connections (``geometry'') parameters, (ii) model on-site parameters, and
(iii) DMRG Solver parameters. Each type of input parameters is discussed below.

2.2 SolverOptions
SolverOptions= in the input file must contain a comma-separated list of strings. At least one of the
following strings must be provided:

none Use this when no options are given, because the list of strings must be non-null. Note that ``none''
does not disable other options.

useSu2Symmetry Use the SU(2) symmetry for the model, and interpret quantum numbers in the line ``QNS'' appropri-
ately.

11

LO
C
A
L
C
O
PY

CHAPTER 2. INPUT

nofiniteloops Don't do finite loops, even if provided under ``FiniteLoops'' below.

restart Restart from a previously saved run. See FIXME

debugmatrix Print Hamiltonian matrix for targeted sector of superblock

exactdiag Do exact diagonalization with LAPACK instead of Lanczos

nodmrgtransform Do not DMRG transform bases

useDavidson Use Davidson instead of Lanczos

verbose Enable verbose output

now昀� Disable the Wave Function Transformation (WFT)

targetnoguess Do not guess non ground state targets

complex TBW

inflate TBW

twositedmrg Use 2-site DMRG. Default is 1-site DMRG

noloadw昀� TBW

concurren琀�ridiag TBW

ChebyshevSolver Use ChebyshevSolver instead of Lanczos

MatrixVectorStored Store superblock sector of Hamiltonian matrix in memory instead of constructing it on the fly.

MatrixVectorKron TBW

TimeStepTarge琀�ing TDMRG algorithm

DynamicTarge琀�ing TBW

AdaptiveDynamicTarge琀�ing TBW

CorrectionVectorTarge琀�ing TBW

CorrectionTarge琀�ing TBW

TargetingAncilla TBW

Me琀�sTarge琀�ing TBW

geometryallinsystem During infinite algorithm make environment contain always exactly one site

vectorwithoffsets TBW

allPvectors TBW

printgeometry TBW

tarDisable Do not tar output files

tarNoDelete Do not delete output files a昀�er taring them.

recoveryNoDelete Do not delete recovery files even if run finishes OK

This is work in progress 12

LO
C
A
L
C
O
PY

2.3. GEOMETRY INPUT

2.3 Geometry Input
吀�is needs to be in PsimagLite.

2.4 Model Input
吀�e Model parameters vary from model to model.

2.5 DMRG Solver parameters
Model=string A string indicating the model, be it HubbardOneBand Heisenberg, etc.

SolverOptions= in the input file must contain a comma-separated list of strings. At least one
of the following strings must be provided:

none Use this when no options are given, because the list of strings must be non-null. Note that
``none'' does not disable other options.

useSu2Symmetry Use the SU(2) symmetry for the model, and interpret quantum numbers in the line ``QNS''
appropriately.

nofiniteloops Don't do finite loops, even if provided under ``FiniteLoops'' below.

restart Restart from a previously saved run. See FIXME

debugmatrix Print Hamiltonian matrix for targeted sector of superblock

exactdiag Do exact diagonalization with LAPACK instead of Lanczos

nodmrgtransform Do not DMRG transform bases

useDavidson Use Davidson instead of Lanczos

verbose Enable verbose output

now昀� Disable the Wave Function Transformation (WFT)

targetnoguess Do not guess non ground state targets

complex TBW

inflate TBW

twositedmrg Use 2-site DMRG. Default is 1-site DMRG

noloadw昀� TBW

concurren琀�ridiag TBW

ChebyshevSolver Use ChebyshevSolver instead of Lanczos

MatrixVectorStored Store superblock sector of Hamiltonian matrix in memory instead of constructing it on the fly.

MatrixVectorKron TBW

TimeStepTarge琀�ing TDMRG algorithm

DynamicTarge琀�ing TBW

AdaptiveDynamicTarge琀�ing TBW

This is work in progress 13

LO
C
A
L
C
O
PY

CHAPTER 2. INPUT

CorrectionVectorTarge琀�ing TBW
CorrectionTarge琀�ing TBW

TargetingAncilla TBW
Me琀�sTarge琀�ing TBW

geometryallinsystem During infinite algorithm make environment contain always exactly one site
vectorwithoffsets TBW

allPvectors TBW
printgeometry TBW

tarDisable Do not tar output files
tarNoDelete Do not delete output files a昀�er taring them.

recoveryNoDelete Do not delete recovery files even if run finishes OK

version=string Amandatory string that is read and ignored. Usually contains the result of doinggit rev-parse HEAD.

outputfile=string 吀�e output file. 吀�is file will be created if non-existent, and if it exits it will be truncated.

InfiniteLoopKeptStates=integer m value for the infinite algorithm.

FiniteLoops=vector A series of space-separated numbers. More than one space is allowed. 吀�e first number is the number
of finite algorithm movements, followed by series of three numbers for each movement. Of the three
numbers, the first is the number of sites to go forward if positive or backward if negative. 吀�e second
number is the m for this movement and the last number is either 0 or 1, 0 will not save state data
to disk and 1 will save all data to be able to calculate observables. 吀�e first movement starts from
where the infinite loop le昀� off, at the middle of the la琀�ice. See the below for more information and
examples on Finite Loops.

2.5.1 Finite Loops

2.5.2 Enabling finite loops
To enable finite loops make sure that the option `nofiniteloops` is not present under `SolverOptions=`.
Remember that the entry FiniteLoops in the input file is a series of space-separated numbers. More
than one space is allowed. 吀�e first number is the number of finite algorithm ``movements,'' followed by
series of three numbers for each movement. Of the three numbers, the first is the number of sites to go
forward if positive or backward if negative. 吀�e second number is the 𝑚 for this movement and the last
number is a bitwise option described in §2.5.4. 吀�e first movement starts from where the infinite loop le昀�
off, at the middle of the la琀�ice.

2.5.3 Example of a Finite loops line in the input file
FiniteLoops 4 7 200 0 -7 200 0 7 200 1 7 200 1

吀�e number 4 implies 4 finite loops. 吀�e first fine loop is 7 200 0, meaning go forward 7 steps, use
m=200 for this finite sweep, and 0: do not store transformation in disk. 吀�e next is -7 200 0, which goes
backwards 7 sites, etc. Remember that the finite loops start at the middle of the la琀�ice, where the infinite
loop le昀� off. ADD FIGURE SHOWING WHAT THIS DOES.

This is work in progress 14

LO
C
A
L
C
O
PY

2.5. DMRG SOLVER PARAMETERS

Bit Description
0 save or don't save state for the observe code
1 compute the g.s. or fast WFT it
2 compute the g.s. or slowly WFT it

Table 2.1: Meaning of each bit of the third number in the finite loop triplet. It is a fatal error to have both
bits 1 and 2 set.

2.5.4 吀�e third number in the triplet
吀�e third number in the triplet is a bitwise option where the first bit means save or don't save, the second
bit compute the g.s. or WFT it without eigenvalue or eigenvector updates, and the third bit compute the g.s.
of WFT it updating eigenvalue and eigenvector. It is a fatal error to have both bits 1 and 2 set.

2.5.5 Caveats and Troubleshooting
If `nofiniteloops` is an option in the options line of the input file then the FiniteLoops line in the input
file is ignored, and no finite loops are done. In this case, DMRG++ stops when the infinite algorithm has
finished.

Make sure the first number is the number of triplets that follow.
Make sure you don't fall off the la琀�ice, by going forward or backwards too much. Remember that at

least one site must remain for the system part of the la琀�ice. So on a 16 site chain, when you start the finite
loops you're at the middle, you can go forward at most 7 sites, and backwards at most 7 sites.

吀�ere is some checking done to the finite loops input, see PTEXREF139, but you might find that it's not
comprehensive.

This is work in progress 15

LO
C
A
L
C
O
PY

CHAPTER 2. INPUT

This is work in progress 16

LO
C
A
L
C
O
PY

Chapter 3

Output

3.1 Standard Output and Error
If you run

./dmrg -f input.inp

youwill seemessages printed to the log file. 吀�ese are processed by thePsimagLite classProgressIndicator
and are designed to show the DMRG++ progress. All these messages are of the form:

Class [T]: Message

where Class is the class that is currently executing and the message hints at what is being executed. 吀�e
number T between brackets is the wall time ellapsed since program start.

A昀�er the program finishes, all files are put in a tar file. You can obtain the energies with

./toolboxdmrg -f input.inp -a energies

3.2 In-situ measurements
In-situ measurements are possible only for one-point observables. If you need two- or four-point operators,
please see section 3.3. If you run

./dmrg -f input.inp -o ':operator.txt'

you will get the observable
⟨𝜓|:operator.txt|𝜓⟩, (3.1)

where :operator is any one-point operator, and the meaning of |𝜓⟩ is explained later in this section.
吀�e file operator.txt contains the operator to be measured in the Hilbert space of one site. It is
recommended that the operator executable be used to generate the operator.txt.

吀�e arguments to the operator executable are as follows.

-f [Mandatory, String] Input to use. 吀�e Model= line is very important in input.inp.

17

LO
C
A
L
C
O
PY

CHAPTER 3. OUTPUT

-s [Optional, Integer] Site for operator. Meaningful only for Models where the Hilbert space depends on
the site (different kinds of atoms). Defaults to 0.

-l [Mandatory, String] 吀�e label or name for this operator. 吀�is is model dependent. For example to
obtain 𝑐↑ for the Hubbard model, say

./operator -l c -f input.inp -F -1

See the function naturalOperator for each Model.

-d [Optional, Integer] Degree of freedom (spin, orbital or combination of both) to use. 吀�is is model
dependent. For example to obtain 𝑐↓ for the Hubbard model, say

./operator -l c -d 1 -f input.inp -F -1

See the function naturalOperator for each Model. Defaults to 0.

-F [Mandatory, 1 or -1] If this operator commutes on different sites say 1 here. If it anticommutes on
different sites say -1.

-t [Optional, Void] Transpose the operator. For example to obtain 𝑐†
↑ for a Hubbard model, say

./operator -l c -t -f input.inp -F -1

吀�e meaning of |𝜓⟩ in Eq. (3.1) depends on the targeting used. For GroundStateTarge琀�ing, |𝜓⟩ is the
current target, usually the ground state, sometimes only in w昀� form. But if restarting a run, the current
target can be the state le昀� off by the previous run.

For Me琀�sTarge琀�ing and TargetingAncilla, Eq. (3.1) is computed multiple times at each DMRG step for
different |𝜓⟩ vectors. 吀�ese are all the temperature evolved states, and the collapsed state for Me琀�sTarge琀�ing.

For all other targetings, Eq. (3.1) is computed multiple times at each DMRG step for different |𝜓⟩ vectors,
including the the |𝜓⟩ corresponding to GroundStateTarge琀�ing. 吀�e other vectors |𝜓⟩ are either (i) time vec-
tors for TimeStepTarge琀�ing, (ii) dynamic vectors for AdaptiveDynamicTarge琀�ing and DynamicTarge琀�ing,
and (iii) correction vectors for CorrectionVectorTarge琀�ing.

To be able to compute Green functions, TimeStepTarge琀�ing computes in addition

⟨𝜓|:operator.txt|𝜙0⟩, (3.2)

where |𝜓⟩ is the GroundStateTarge琀�ing vector, and |𝜙0⟩ the first time vector. 吀�e same is true for Correc-
tionVectorTarge琀�ing, where |𝜙0⟩ is the correction vector.

To compute multiple operators in the same DMRG++ run, use

./dmrg -f input.inp -o ':operator0.txt,:operator1.txt:...'

which will show

⟨𝜓|:operator0.txt|𝜓⟩,
⟨𝜓|:operator1.txt|𝜓⟩,
⋯ .

This is work in progress 18

LO
C
A
L
C
O
PY

3.3. THE OBSERVER DRIVER

3.3 吀�e Observer Driver

3.4 吀�e Disk Stacks

3.5 吀�eW昀� Data Files

3.6 Signals
PLEASE NOTE: 吀�is is an experimental (CITATION NEEDED FIXME) feature. To use it you must add
-DUSE_SIGNALS to CPPFLAGS in the Makefile.

3.6.1 SIGUSR1
Rationale: When running a process in a queue batching system the standard output and standard error
might be buffered, and, thus, might not be seen until program completion. DMRG++ allows the user to store
(a fragment of) the stdout and stderr buffers into a temporary file to monitor program process in situations
where stdout and stderr would not normally be accessible.

Sending the signal SIGUSR1 to the DMRG++ process will result in switching the state of the ProgressIndi-
cator buffer: if the state was inactive it will become active, and viceversa. Only when the state of the
ProgressIndicator buffer is active does ProgressIndicator store its stream in memory. 吀�is stream contains
the standard output and standard error printed by DMRG++. When the state of the ProgressIndicator is
switched back from active to inactive, DMRG++ dumps the buffer into a temporary file, and closes the
buffer. 吀�e temporary file is named bufferN.txt where N is the PID of the DMRG++ process.

HINT: qsig might be used to send a signal if the DMRG++ process is running in PBS or torque.
CAVEATS: Leaving the buffer on for long periods of time might cause high memory consumption. 吀�e

temporary buffer file is overwri琀�en if the buffer is used more than once by the same process. 吀�e temporary
buffer file is not deleted at the end of program execution.

This is work in progress 19

LO
C
A
L
C
O
PY

CHAPTER 3. OUTPUT

This is work in progress 20

LO
C
A
L
C
O
PY

Chapter 4

Developer's Guide

4.1 Main Driver
吀�e high level program is this

//! Setup the Model
ModelType model(mp,dmrgGeometry);

//! Setup the dmrg solver:
SolverType dmrgSolver(dmrgSolverParams,model,concurrency);

//! Perform DMRG Loops:
dmrgSolver.main();

Graphic showing the template dependencies of the classes

4.2 DMRG Engine

4.2.1 DMRG Algorithm
Let us define block to mean a finite set of sites. Let 𝐶 denote the states of a single site. 吀�is set is model
dependent. For the Hubbard model it is given by: 𝐶 = {𝑒, ↑, ↓, (↑, ↓)}, where 𝑒 is a formal element that
denotes an empty state. For the t-J model it is given by 𝐶 = {𝑒, ↑, ↓}, and for the Heisenberg model by
𝐶 = {↑, ↓}. A real-space-based Hilbert space 𝒱 on a block 𝐵 and set 𝐶 is a Hilbert space with basis 𝐵u�. I
will simply denote this as 𝒱(𝐵) and assume that 𝐶 is implicit and fixed. A real-space-based Hilbert space
can also be thought of as the external product space of #𝐵 Hilbert spaces on a site, one for each site in
block 𝐵. We will consider general Hamiltonians that act on Hilbert spaces 𝒱, as previously defined.

I shall give a procedural description of the DMRG method in the following. We start with an initial
block 𝑆 (the initial system) and 𝐸 (the initial environment). Consider two sets of blocks 𝑋 and 𝑌 . We will
be adding blocks from 𝑋 to 𝑆, one at a time, and from 𝑌 to 𝐸, one at a time. Again, note that 𝑋 and 𝑌 are
sets of blocks whereas 𝑆 and 𝐸 are blocks. 吀�is is shown schematically in Fig. 4.1. All sites in 𝑆, 𝑋, 𝑌 and
𝐸 are numbered as shown in the figure.

Now we start a loop for the DMRG ``infinite'' algorithm by se琀�ing 𝑠𝑡𝑒𝑝 = 0 and 𝒱u�(𝑆) ≡ 𝒱(𝑆) and
𝒱u�(𝐸) ≡ 𝒱(𝐸).

21

LO
C
A
L
C
O
PY

CHAPTER 4. DEVELOPER'S GUIDE

Figure 4.1: Labeling of blocks for the DMRG procedure. Blocks from vector of blocks X are added one at a
time to block 𝑆 to form the system and blocks from vector of blocks Y are added one at a time to E to form
the environment. Blocks are vectors of integers. 吀�e integers (numbers at the top of the figure) label all
sites in a fixed and unique way.

吀�e system is grown by adding the sites in 𝑋u�u�u�u� to it, and let 𝑆′ = 𝑆 ∪ 𝑋u�u�u�u�, i.e. the 𝑠𝑡𝑒𝑝-th
block of 𝑋 to 𝑆 is added to form the block 𝑆′; likewise, let 𝐸′ = 𝐸 ∪ 𝑌u�u�u�u�. Let us form the following
product Hilbert spaces: 𝒱(𝑆′) = 𝒱u�(𝑆) ⊗ 𝒱(𝑋u�u�u�u�) and 𝒱(𝐸′) = 𝒱u�(𝐸) ⊗ 𝒱(𝑌u�u�u�u�) and their union
𝒱(𝑆′) ⊗ 𝒱(𝐸′) which is disjoint.

Consider �̂�u�′∪u�′ , the Hamiltonian operator, acting on 𝒱(𝑆′) ⊗ 𝒱(𝐸′). Using Lanczos4.4.3, we diago-
nalize �̂�u�′∪u�′ to obtain its lowest eigenvector:

|𝜓⟩ = ∑
u�∈u�(u�′),u�∈u�(u�′)

𝜓u�,u�|𝛼⟩ ⊗ |𝛽⟩, (4.1)

where {|𝛼⟩} is a basis of 𝒱(𝑆′) and {|𝛽⟩} is a basis of 𝒱(𝐸′).
We proceed in the same way for the environment, diagonalize ̂𝜌u� to obtain ordered eigenvectors 𝑤u�,

and define (𝐻u�′u�u�u� u�u�u�u�u�)u�,u�′ . Now we set 𝑆 ← 𝑆′, 𝒱u�(𝑆) ← 𝒱u�(𝑆′), 𝐻u�′ ← 𝐻u�, and similarly for
the environment, increase step by one, and continue with the growth phase of the algorithm. In the infinite
algorithm, the number of sites in the system and environment grows as more steps are performed. A昀�er
this infinite algorithm, a finite algorithm is applied where the environment is shrunk at the expense of the
system, and the system is grown at the expense of the environment. During the finite algorithm (Section
to be wri琀�en) phase the total number of sites remains constant allowing for a formulation of DMRG as a
variational method in a basis of matrix product states.

吀�e advantage of the DMRG algorithm is that the truncation procedure described above keeps the error
bounded and small. Assume 𝑚u� = 𝑚u� = 𝑚. At each DMRG step[2] the truncation error 𝜖u�u� = ∑u�>u� 𝜆u�,
where 𝜆u� are the eigenvalues of the truncated density matrix 𝜌u� in decreasing order. 吀�e parameter 𝑚
should be chosen such that 𝜖u�u� remains small, say [2] 𝜖u�u� < 10−6. For critical 1D systems 𝜖u�u� decays as a
function of 𝑚 with a power law, while for 1D system away from criticality it decays exponentially. For a
more detailed description of the error introduced by the DMRG truncation in other systems see [2, 7, 3, 6].

4.2.2 Driver Program
Let us motivate the discussion by introducing a typical problem to be solved by DMRG: ``Using the DMRG
method, one would like to calculate the local density of states on all sites for a Hubbard model with
inhomogeneous Hubbard U values on a one-dimensional (1D) chain''. We want to modularize as many tasks
mentioned in the last sentence as possible. We certainly want to separate the DMRG solver from the model
in question, since we could later want to do the same calculation for the t-J model; and the model from

This is work in progress 22

LO
C
A
L
C
O
PY

4.2. DMRG ENGINE

the la琀�ice, since we might want to do the same calculation on, say, a n-leg ladder, instead of a 1D chain.
C++ is a computer language that is very fit for this purpose, since it allows to template classes. 吀�en we
can write a C++ class to implement the DMRG method (DmrgSolver class), and template this class on a
strongly-correlated-electron (SCE) model template, so that we can delegate all SCE model related code to
the SCE model class.

However, for DmrgSolver to be able to use a given SCE model, we need a convention that such SCE
model class will have to follow. 吀�is is known as a C++ public interface, and for a SCE model it is given in
DmrgModelBase. To do the calculation for a new SCE model, we simply need to implement all functions
found in DmrgModelBase without changing the DmrgSolver class. 吀�e model will, in turn, be templated on
the geometry. For example, the Hubbard model with inhomogeneous Hubbard U values and inhomogeneous
hoppings (class DmrgModelHubbard) delegates all geometry related operations to a templated geometry
class. 吀�en DmrgModelHubbard can be used for, say, one-dimensional chains and n-leg ladders without
modification. 吀�is is done by just instantiating DmrgModelHubbard with the appropriate geometry class,
either DmrgGeometryOneD or DmrgGeometryLadder, or some other class that the reader may wish to
write, which implements the interface given in DmrgGeometryBase. Add figure showing interfaces

In the following sections I will describe these different modules. Since the reader may wish to first
understand how the DMRG method is implemented, I will start with the core C++ classes that implement
the method. 吀�e user of the program will not need to change these core classes to add functionality.
Instead, new models and geometries can be added by creating implementations for DmrgModelBase and
DmrgGeometryBase, and those public interfaces will be explained next.

But for now I end this section by briefly describing the ``driver'' program for a Hubbard model on a 1D
chain (see file dmrg.cpp). 吀�ere, DmrgSolver is instantiated with DmrgModelHubbard, since in this case
one wishes to perform the calculation for the Hubbard model. In turn, DmrgModelHubbard is instantiated
with DmrgGeometryOneD since now one wishes to perform the calculation on a 1D chain.

Expand the driver explanation

4.2.3 DmrgSolver and吀�e ``Infinite'' DMRG Algorithm
吀�e purpose of the DmrgSolver class is to perform the loop for the DMRG ``infinite algorithm'' discussed
before. 吀�is class also performs the ``finite algorithm'' [7] to allow for the calculation of static (and in the
future dynamic) observables, such as static correlations.

吀�e program is structured as a series of header files containing the implementation1 with each class
wri琀�en in the header file of the same name, and a ``driver'' program that uses the capabilities provided
by the header files to solve a specific problem. To simplify the discussion, we start where the ``driver
program'' starts, in its int main() function, which calls dmrgSolver.main(), whose main work
is to perform the loop for the ``infinite'' DMRG algorithm. Let us now discuss this loop which is found in
the infiniteDmrgLoop function, and is sketched in Fig. 4.2.

In Fig. 4.2(a) the system pS is grown by adding the sites contained in block X[step]. Note that X is a
vector of blocks to be added one at a time2. 吀�e block X[step] (usually just a single site) is added to the right
of pS. 吀�e result is stored in lrs_.left(). Similarly is done in Fig. 4.2(b) for the environment: the block
Y[step] (usually just a single site) is added to the environment given in pE and stored in lrs_.right().
吀�is time the addition is done to the le昀� of pE, since pE is the environment. In Fig. 4.2(c) the outer product
of lrs_.left() (the new system) and lrs_.right() (the new environment) is made and stored

1Traditionally, implementation is wri琀�en in cpp files that are compiled separately. However, here templates are used heavily, and
to avoid complications related to templates that some C++ compilers cannot handle, we choose to have only one translation unit.

2So X is a vector of vector of integers, and X[step] is a vector of integers.

This is work in progress 23

LO
C
A
L
C
O
PY

CHAPTER 4. DEVELOPER'S GUIDE

for (step=0;step<X.size();step++) {
// grow system (a)
lrs_.growLeftBlock(model_,pS,X[step]);
// grow environment (b)
lrs_.growRightBlock(model_,pE,Y[step]);
// product of system and environment (c)
lrs_.setToProduct(quantumSector_);

diagonalization_(psi,INFINITE,X[step],Y[step]); (d)
truncate_(pS,psi,parameters_.keptStatesInfinite,EXPAND_SYSTEM); (e)
truncate_(pE,psi,parameters_.keptStatesInfinite,EXPAND_ENVIRON); (f)

checkpoint_.push(pS,pE); //(g)
}

Figure 4.2: Implementation of the ``infinite'' DMRG loop for a general SCE model on a general geometry.

in pSE. 吀�e actual task is delegated to the Basis class (see Section 4.3). In Fig. 4.2(d) the diagonalization
of the Hamiltonian for block pSE is performed, and the ground state vector is computed and stored in
psi, following Eq. (4.1). 吀�e object called concurrency is used to handle parallelization over matrix blocks
related to symmetries present in the model (see section). Next, in Fig. 4.2(e) the bases are changed following
Eqs. (4.5,4.6,4.7), truncated if necessary, and the result is stored in pS for the system, and in pE, Fig. 4.2(f),
for the environment. Note that this overwrites the old pS and pE, preparing these variable for the next
DMRG step.

A copy of the current state of the system is pushed into a last-in-first-out stack in Fig. 4.2(g), so that it
can later be used in the finite DMRG algorithm (not discussed here, see code). 吀�e loop continues until
all blocks in vector of blocks X have been added to the initial system S, and all blocks in vector of blocks
Y have been added to the initial environment E. We repeat again that vector of sites are used instead of
simply sites to generalize the growth process, in case one might want to add more than one site at a time.

吀�e implementation of the steps mentioned in the previous paragraph (i.e., growth process, outer
products, diagonalization, change of basis and truncation) are described in FIXME.

4.2.4 Finite Algorithm

4.3 Hilbert Space Basis I: DmrgBasis and Symmetries

4.3.1 Local Symmetries
DMRG++ has twoC++ classes that handle the concept of a basis (of a Hilbert space). 吀�e first one (DmrgBasis)
handles reordering and symmetries in a general way, without the need to consider operators. 吀�e second
one (DmrgBasisWithOperators) does consider operators, and will be explained in the next sub-section. 吀�e
advantage of dividing functionality in this way will become apparent later.

In any actual computer simulation the ``infinite'' DMRG loop will actually stop at a certain point. Let
us say that it stops a昀�er 50 sites have been added to the system3. 吀�ere will also be at this point another
50 sites that constitute the environment. Now, from the beginning each of these 100 sites is given a fixed

3For simplicity, this explanatory text considers the case of blocks having a single site, so one site is added at a time, but a more
general case can be handled by the code.

This is work in progress 24

LO
C
A
L
C
O
PY

4.3. HILBERT SPACE BASIS I: DMRGBASIS AND SYMMETRIES

number from 0 to 99. 吀�erefore, sites are always labeled in a fixed way and their labels are always known
(see Fig. 4.1). 吀�e variable block of a DmrgBasis object indicates over which sites the basis represented by
this object is being built.

Symmetries will allow the solver to block the Hamiltonian matrix in blocks, using less memory, speeding
up the computation and allowing the code to parallelize matrix blocks related by symmetry. Let us assume
that our particular model has 𝑁u� symmetries labeled by 0 ≤ 𝛼 < 𝑁u�. 吀�erefore, each element 𝑘 of the
basis has 𝑁u� associated ``good'' quantum numbers ̃𝑞u�,u�. 吀�ese quantum numbers can refer to practically
anything, for example, to number of particles with a given spin or orbital or to the 𝑧 component of the
spin. We do not need to know the details to block the matrix. We know, however, that these numbers
are finite, and let 𝑄 be an integer such that ̃𝑞u�,u� < 𝑄 ∀𝑘, 𝛼. We can then combine all these quantum
numbers into a single one, like this: 𝑞u� = ∑u� ̃𝑞u�,u�𝑄u�, and this mapping is bijective. In essence, we
combined all ``good'' quantum numbers into a single one and from now on we will consider that we have
only one Hamiltonian symmetry called the ``effective'' symmetry, and only one corresponding number 𝑞u�,
the ``effective'' quantum number. 吀�ese numbers are stored in the member quantumNumbers of C++ class
Basis. (Note that if one has 100 sites or less,4 then the number 𝑄 defined above is probably of the order
of hundreds for usual symmetries, making this implementation very practical for systems of correlated
electrons.)

We then reorder our basis such that its elements are given in increasing 𝑞 number. 吀�ere will be a permu-
tation vector associated with this reordering, that will be stored in the member permutationVector
of class Basis. For ease of coding we also store its inverse in permInverse.

What remains to be done is to find a partition of the basis which labels where the quantum number
changes. Let us say that the quantum numbers of the reordered basis states are

{3, 3, 3, 3, 8, 8, 9, 9, 9, 15, ⋯}.

吀�en we define a vector named ``partition'', such that partition[0]=0, partition[1]=4, because the quantum
number changes in the 4th position (from 3 to 8), and then partition[2]=6, because the quantum number
changes again (from 8 to 9) in the 6th position, etc. Now we know that our Hamiltonian matrix will be
composed first of a block of 4x4, then of a block of 2x2, etc.

吀�e quantum numbers of the original (untransformed) real-space basis are set by the model class (to
be described in Section 4.5), whereas the quantum numbers of outer products are handled by the class
Basis and BasisImplementation, function setToProduct. 吀�is can be done because if |𝑎⟩ has quantum
number 𝑞u� and |𝑏⟩ has quantum number 𝑞u�, then |𝑎⟩ ⊗ |𝑏⟩ has quantum number 𝑞u� + 𝑞u�. Basis knows how
quantum numbers change when we change the basis: they do not change since the DMRG transformation
preserves quantum numbers; and Basis also knows what happens to quantum numbers when we truncate
the basis: quantum numbers of discarded states are discarded. In this way, symmetries are implemented
efficiently, with minimal dependencies and in a model-independent way.

4.3.2 Product of Spaces
If 𝒱1 is a Hilbert space of dimension 𝑛1, and 𝒱2 is a Hilbert space of dimension 𝑛2, then a state 𝜓 ∈ 𝒱1 ⊗𝒱2
is given by: 𝜓u�,u� with 𝛼 ∈ 𝒱1 and 𝛽 ∈ 𝒱2. In DMRG++ a single index is used to ``pack'' 𝛼 and 𝛽
together, like this 𝛼 + 𝑛1𝛽 (you can prove that this is a bijection from (𝛼, 𝛽) ⟷ 𝛼 + 𝑛1𝛽. 吀�is isn't the
complete packing, however, because we need to reorder the states for symmetry reasons. We use then a
permutation (actually it's the inverse permutation in the code) 𝑃 −1. Pu琀�ing all together you get 𝜓u�, with

4吀�is is probably a maximum for systems of correlated electrons such as the Hubbard model or the t-J model.

This is work in progress 25

LO
C
A
L
C
O
PY

CHAPTER 4. DEVELOPER'S GUIDE

𝑖 = 𝑃 −1(𝛼 + 𝑛1𝛽). I like to write it more formally with a Kronecker delta, like this: ∑u� 𝜓u�𝛿u�(u�),u�+u�1u�.
Note how, for fixed 𝛼 and 𝛽, the 𝛿 picks up the correct (packed and permuted) index 𝑖.

4.3.3 Le昀�, Right, and Super

In standard DMRG, states are decomposed into le昀�, right and super[block] spaces. 吀�e le昀� and right spaces
are further decomposed into a block plus a site, on the le昀� side; and site plus a block, on the right side. 吀�ere
are then 3 products of spaces, giving rise to 3 packings and 3 permutations. I use the notations 𝑃u�, 𝑃u�, and
𝑃u�u�, respectively (or its inverses). 吀�e words le昀� and system, right and environment, and super[block]
and system-environment are used interchangably in the code.

Consider the system or le昀� block 𝒮 as 𝒮′ plus a site, like this: 𝒮 = 𝒮′ ⊗𝒱1. Consider an operator 𝐴u�1,u�′
1

acting on the space of one site, 𝒱1 such that both 𝑥1, 𝑥′
1 ∈ 𝒱1. Consider the superblock 𝒮′⊗𝒱1⊗ℰ ≡ 𝒮⊗ℰ.

Consider a state on the superblock 𝜓. 吀�en the 𝑗−th component of 𝐴𝜓 is

(𝐴𝜓)u� = ∑ 𝛿u�u�u�(u�),u�+u�u�u�
𝛿u�u�(u�),u�0+u�1u�0)𝐴u�1,u�′

1
(4.2)

𝛿u�′,u�−1
u� (u�0+u�1′u�0)𝛿u�,u�−1

u�u�(u�′+u�′u�u�)𝜓u�𝑓u�(𝑥) (4.3)

A sum over all indices except 𝑗 is assumed. Let's analyze this. Because 𝑖 is in the superblock, it's packed
and permuted, so we have to unpack it and un-permute it, that is, find 𝑥 ∈ 𝒮 and 𝑦 ∈ ℰ that correspond to
it. Formally, in the equation in this paper, the delta picks up the right one: 𝛿u�u�u�(u�),u�+u�u�u�

. In the code we
simply apply the permutation 𝑃u�u� to 𝑖 and then divide by 𝑛u�. 吀�e quotient is 𝑦 and the remainder is 𝑥.
Now, 𝐴 does not act on ℰ, so 𝑦 will remain the same. But 𝑥 ∈ 𝒮′ ⊗ 𝒱1, so again, we need to unpack it and
un- permute it. 吀�at's what the next delta, 𝛿u�u�(u�),u�0+u�1u�0

does. Note that now the permutation is 𝑃u� as
opposed to 𝑃u�u�. We are ready now to apply 𝐴, with 𝐴u�1,u�′

1
.

Next, the reverse procedure must be applied. We need to pack 𝑥0, 𝑥′
1, 𝑦 into a single index and perform

all permutations. We do this in two stages (two 𝛿s). 吀�e first one does 𝑥0, 𝑥′
1 into 𝑥′, the second one 𝑥′, 𝑦

into 𝑗, which is the free index.
In the above, I le昀� out a few complications, which I will now a琀�end to.

Fermionic Sign

To apply 𝐴u�1,u�′
1
to (𝑥0, 𝑥1) we need to step over 𝑥0, that is, the space 𝒮′. If 𝐴 is fermionic we might pick

up a sign. 吀�is sign will be equal to 1 if the number of electrons of state 𝑥0 is even, and -1 otherwise. 吀�is
is represented by 𝑓u�(𝑥) in the equation above.

Vectors in chunks

Because of symmetry, the vector 𝜓 has only one (or a few) non-zero chunks. 吀�en we ought not to loop
or sum over the whole superblock like in ∑u�. Instead, we need to only loop or sweep or sum over the
non-zero chunk(s). 吀�is is easily taken care of by storing the partition of the superblock, and is mostly
straightforward, except that there is one complication we must a琀�end to. For simplicity, assume that 𝜓
has only one chunk. 吀�en if the resulting 𝑗 is outside 𝜓's chunk, 𝐴𝜓 and 𝜓 will have different symmetries,
and 𝐴𝜓 will need to be stored in a different chunk. 吀�e DMRG++ class VectorWithOffsets does
this transparently. For performance reasons, there is also a VectorWithOffset class to use when we
know 𝐴 does not transport 𝜓 into a different symmetry chunk.

This is work in progress 26

LO
C
A
L
C
O
PY

4.4. HILBERT SPACE BASIS II: DMRGBASISWITHOPERATORS

Sparse matrices

吀�e matrix 𝐴 is usually stored in a sparse format. DMRG++ uses compressed row storage (CRS, REF-
ERENCE HERE FIXME). 吀�erefore the looping is done according to the CRS scheme. See the loop in
ApplyOperatorLocal.h, line 155 or whereabouts.

4.3.4 SU(2) Symmetry

4.4 Hilbert Space Basis II: DmrgBasisWithOperators

4.4.1 Outer Product of Operators
A class to represent a Hilbert Space for a strongly correlated electron model Derives from Basis

C++ class Basis (and BasisImplementation) implement only certain functionality associated with a
Hilbert space basis, as mentioned in the previous section. However, more capabilities related to a Hilbert
space basis are needed.

C++ class BasisWithOperators inherits from Basis, and contains certain local operators for the basis in
question, as well as the Hamiltonian matrix. 吀�e operators that need to be considered here are operators
necessary to compute the Hamiltonian across the system and environment, and to compute observables.
吀�erefore, the specific operators vary from model to model. For example, for the Hubbard model, we
consider 𝑐u�u� operators, that destroy an electron with spin 𝜎 on site 𝑖. For the Heisenberg model, we consider
operators 𝑆+

u� and 𝑆u�
u� for each site 𝑖. In each case these operators are calculated by the model class (see

Section 4.5) on the ``natural'' basis, and added to the basis in question with a call to setOperators().
吀�ese local operators are stored as sparse matrices to save memory, although the matrix type is templated
and could be anything. For details on the implementation of these operators, seeOperatorsBase, its common
implementation OperatorsImplementation, and the two examples provided OperatorsHubbard and Opera-
torsHeisenberg for the Hubbard and Heisenberg models, respectively. Additionally, BasisWithOperators
has a number of member functions to handle operations that the DMRG method performs on local operators
in a Hilbert space basis. 吀�ese include functions to create an outer product of two given Hilbert spaces, to
transform a basis, to truncate a basis, etc.

Let us now go back to the ``infinite'' DMRG loop and discuss in more detail Fig. 4.2(a) ((b) is similar)),
i.e., the function grow().

Local operators are set for the basis in question with a call to BasisWithOperators's member function
setOperators(). When adding sites to the system or environment the program does a full outer
product, i.e., it increases the size of all local operators. 吀�is is performed by the call to setToProduct
(pSprime,pS,Xbasis,dir,option) in the grow function, which actually callspSprime.setToProduct
(pS,xBasis,dir) 吀�is function also recalculates the Hamiltonian in the outer product of (i) the previ-
ous system basis 𝑝𝑆, and (ii) the basis 𝑋𝑏𝑎𝑠𝑖𝑠 corresponding to the site(s) that is (are) being added. To do this,
the Hamiltonian connection between the two parts needs to be calculated and added, and this is done in the
call to addHamiltonianConnection. Finally, the resulting dmrgBasis object for the outer product,
pSprime, is set to contain this full Hamiltonianwith the call topSprime.setHamiltonian(matrix).

I will know explain how the full outer product between two operators is implemented. If local operator
𝐴 lives in Hilbert space 𝒜 and local operator 𝐵 lives in Hilbert space ℬ, then 𝐶 = 𝐴𝐵 lives in Hilbert
space 𝒞 = 𝒜 ⊗ ℬ. Let 𝛼1 and 𝛼2 represent states of 𝒜, and let 𝛽1 and 𝛽2 represent states of ℬ. 吀�en, in
the product basis, 𝐶u�1,u�1;u�2,u�2

= 𝐴u�1,u�2
𝐵u�1,u�2

. Additionally, 𝒞 is reordered such that each state of this
outer product basis is labeled in increasing effective quantum number (see Section 4.3). In the previous
example, if the Hilbert spaces 𝒜 and ℬ had sizes 𝑎 and 𝑏, respectively, then their outer product would

This is work in progress 27

LO
C
A
L
C
O
PY

CHAPTER 4. DEVELOPER'S GUIDE

have size 𝑎𝑏. When we add sites to the system (or the environment) the memory usage remains bounded
by the truncation, and it is usually not a problem to store full product matrices, as long as we do it in a
sparse way (DMRG++ uses compressed row storage). In short, local operators are always stored in the most
recently transformed basis for all sites and, if applicable, all values of the internal degree of freedom 𝜎. See
PTEXREFsetToProductOps and PTEXREFHERE.

吀�e Operators class stores the local operators for this basis. Only the local operators corresponding to
the most recently added sites will be meaningful. Indeed, if we apply transformation 𝑊 (possibly truncating
the basis, see Eq. (4.7)) then

(𝑊 †𝐴𝑊)(𝑊 †𝐵𝑊) ≠ 𝑊 †(𝐴𝐵)𝑊, (4.4)
since 𝑊𝑊 † ≠ 1 because the DMRG truncation does not assure us that 𝑊 † will be the right inverse of 𝑊
(but 𝑊 †𝑊 = 1 always holds). Because of this reason we cannot construct the Hamiltonian simply from
transformed local operators, even if we store them for all sites, but we need to store also the Hamiltonian in
the most recently transformed basis. 吀�e fact that Operators stores local operators in the most recently
transformed basis for all sites does not increase memory usage too much, and simplifies the writing of code
for complicated geometries or connections, because all local opeators are availabel at all times. Each SCE
model class is responsible for determining whether a transformed operator can be used (or not because of
the reason limitation above).

Let us now examine in more detail Fig. 4.2(c), where we form the outer product of the current system
and current environment, and calculate its Hamiltonian. We could use the same procedure as outlined in
the previous paragraph, i.e., to use the DmrgBasisWithOperators class to resize the matrices for all local
operators. Storing matrices in this case (even in a sparse way and even considering that there is truncation)
would be too much of a penalty for performance. 吀�erefore, in this la琀�er case we do the outer product
on-the-fly only, without storing any matrices. In Fig. 4.2(c) pSE contains the outer product of system and
environment, but pSE is only a Basis object, not a BasisWithOperators object, i.e., it does not contain
operators. In the code see setToProductSolver, and setToProductLrs.

We now consider Fig. 4.2(d), where the diagonalization of the system's plus environment's Hamiltonian is
performed. Since lrs_.super(), being only a Basis object, does not contain all the information related
to the outer product of system and environment (as we saw, this would be prohibitively expensive), we need
to pass the system's basis (pSprime) and the environment's basis (pEprime) to the diagonalization functor
diagonalization_(), see Diagonalization, in order to be able to form the outer product
on-the-fly. 吀�ere, since lrs_.super() does provide information about effective symmetry blocking,
we block the Hamiltonian matrix using effective symmetry, and call diagonaliseOneBlock(), see
diagonaliseOneBlock, for each symmetry block. Only those matrix blocks that contain the desired
or targeted number of electrons (or other local symmetry) will be considered.

4.4.2 Truncation
Let us define the density matrices for system:

(̂𝜌u�)u�,u�′ = ∑
u�∈u�(u�′)

𝜓∗
u�′,u�𝜓u�,u� (4.5)

in 𝒱(𝑆′), and environment:
(̂𝜌u�)u�,u�′ = ∑

u�∈u�(u�′)
𝜓∗

u�,u�′𝜓u�,u� (4.6)

in 𝒱(𝐸′). We then diagonalize ̂𝜌u�, and obtain its eigenvalues and eigenvectors, 𝑤u�
u�,u�′ in 𝒱(𝑆′) ordered in

decreasing eigenvalue order. We change basis for the operator 𝐻u�′ (and other operators as necessary), as

This is work in progress 28

LO
C
A
L
C
O
PY

4.4. HILBERT SPACE BASIS II: DMRGBASISWITHOPERATORS

follows:

(𝐻u�′u�u�u� u�u�u�u�u�)u�,u�′ = (𝑤u�)−1
u�,u�(𝐻u�′)u�,u�′𝑤u�

u�′,u�′ . (4.7)

4.4.3 Lanczos Solver

To diagonalize Hamiltonian 𝐻 we use the Lanczos method[4, 5], although this is also templated.

For the Lanczos diagonalization method we also want to provide as much code isolation and modularity
as possible. 吀�e Lanczos method needs only to know how to perform the operation 𝑥+ = 𝐻𝑦, given
vectors 𝑥 and 𝑦. Using this fact, we can separate the matrix type from the Lanczos method. To keep
the discussion short this is not addressed here, but can be seen in the diagonaliseOneBlock()
function, and in classes SolverLanczos, HamiltonianInternalProduct, and DmrgModelHelper. 吀�e first of
these classes contains an implementation of the Lanczos method that is templated on a class that simply has
to provide the operation 𝑥+ = 𝐻𝑦 and, therefore, it is generic and valid for any SCE model. It is important
to remark that the operation 𝑥+ = 𝐻𝑦 is finally delegated to the model in question. As an example, the
operation 𝑥+ = 𝐻𝑦 for the Hubbard model is performed in function matrixVectorProduct()
in class DmrgModelHubbard. 吀�is function performs only three tasks: (i) 𝑥+ = 𝐻u�u�u�u�u�u�𝑦, (ii) 𝑥+ =
𝐻u�u�u�u�u�u�u�u�u�u�u�𝑦 and (iii) 𝑥+ = 𝐻u�u�u�u�u�u�u�u�u�u�𝑦. 吀�e fist two are straightforward, so we focus on the
last one, in hamiltonianConnectionProduct(), that considers the part of the Hamiltonian that
connects system and environment. 吀�is function runs the following loop: for every site 𝑖 in the system
and every site 𝑗 in the environment it calculates 𝑥+ = 𝐻u�u�𝑦 in function linkProduct, a昀�er finding
the appropriate tight binding hopping value.

吀�e function linkProduct is useful not only for the Hubbard model, but it is generic enough to use
in other SCE models that include a tight binding connection of the type 𝑐†

u�u�𝑐u�u�, and, therefore, is part of a
separate class, ConnectorHopping. Likewise, the function linkProduct in ConnectorExchange deals
with Hamiltonian connections of the type ⃗𝑆u� ⋅ ⃗𝑆u�, and can be used by models that include that type of term,
such as the sample Heisenberg model provided with DMRG++. We remind readers that wish to understand
this code that the function linkProduct and, in particular, the related function fastOpProdInter
are more complicated than usual, since (i) the outer product is constructed on the fly, and (ii) the resulting
states of this outer product need to be reordered so that effective symmetry blocking can be used.

This is work in progress 29

LO
C
A
L
C
O
PY

CHAPTER 4. DEVELOPER'S GUIDE

4.5 Model Interface

4.5.1 Abstract Interface

4.5.2 Heisenberg Model

4.5.3 One-Orbital Hubbard Model

4.5.4 Many-Orbital Hubbard Model

4.5.5 t-J model

4.6 Geometry Interface

4.6.1 Abstract Interface
I present two sample geometries, one for 1D chains and one for n-leg ladders in classesDmrgGeometryOneD
and DmrgGeometryLadder. Both derive from the abstract class DmrgGeometryBase. To implement new
geometries a new class needs to be derived from this base class, and the functions in the base class (the
interface) needs to be implemented. As in the case of DmrgModelBase, the interface is documented in the
code, but here I briefly describe the most important functions.

吀�e function setBlocksOfSites needs to set the initial block for system and environment, and
for the vector of blocks 𝑋 and 𝑌 to be added to system and environment, respectively, according to the
convention given in Fig. 4.1. 吀�ere are two calcConnectorType functions. Both calculate the type
of connection between two sites 𝑖 and 𝑗, which can be SystemSystem, SystemEnviron, EnvironSystem
or EnvironEnviron, where the names are self-explanatory. 吀�e function calcConnectorValue de-
termines the value of the connector (e.g., tight-binding hopping for the Hubbard model or 𝐽u�u� for the
case of the Heisenberg model) between two sites, delegating the work to the model class if necessary.
吀�e function findExtremes determines the extremes sites of a given block of sites and the function
findReflection finds the ``reflection'' in the environment block of a given site in the system block or
vice-versa.

4.6.2 One Dimensional Chains

4.6.3 Ladders

4.7 Concurrency Interface: Code Parallelization

4.7.1 Abstract Interface
吀�e Concurrency class encapsulates parallelization. Two concrete classes that implement this interface are
included in the present code. One is for serial code (ConcurrencySerial class) that does no parallelization at
all, and the other one (ConcurrencyMpi class) is for parallelization based on the MPI5. Other parallelization
implementations, e.g. using pthreads, can be similarly wri琀�en by implementing this interface. 吀�e interface
is described in place in class Concurrency. Here, I briefly mention its most important functions. Function
rank() returns the rank of the current processor or thread. nprocs() returns the total number of

5See, for example, h琀�p://www-unix.mcs.anl.gov/mpi/

This is work in progress 30

LO
C
A
L
C
O
PY

4.8. INPUT AND OUTPUT

Figure 4.3: TBW.

processors. Functions loopCreate() and loop() handle a parallelization of a standard loop. Function
gather() gathers data from each processor into the root processor.

4.7.2 MPI

4.7.3 Pthreads

4.7.4 CUDA

4.8 Input and Output

4.8.1 Input System

4.8.2 DiskStack

4.8.3 Program Output

4.8.4 Test Suite

4.9 Optimizations

4.9.1 Wave Function Transformation
I will describe the WFT when shrinking the system. 吀�e implementation of this is in class WaveFunction-
Transformation. Here I focus on the system without SU(2) symmetry support first. We need to consider
that site 𝑗 has just been swallowed by the growing environment. See figure 4.3 for the setup. Latin le琀�ers
label points, Greek le琀�ers label states. 吀�e sub-index 𝑝 indicates the newest DMRG step. 吀�e approximate
guess for the new wave-function 𝜓u�

u�u�
is given in terms of the previous wave-function 𝜓u� by:

𝜓u�
u�u�

= 𝑊 u�
u�,u�𝜓u�𝑊 u�

u�,u�u�
𝛿u�u�u�(u�);u�+u�u�0

𝛿u�u�(u�);u�u�+u�u�u�1
𝛿u�u�

u� (u�u�);u�u�+u�u�u�2
𝛿u�u�

u� (u�u�);u�u�+u�u�u�3
, (4.8)

where the system transformation is𝑊 u�, the environment transformation is𝑊 u�, the new system-environment
permutation 𝑃 u�u�

u� , the new environment permutation 𝑃 u�
u� , the old system-environment permutation 𝑃 u�u�,

This is work in progress 31

LO
C
A
L
C
O
PY

CHAPTER 4. DEVELOPER'S GUIDE

and the new system permutation 𝑃 u�. A sum should be assumed for all indices except 𝜂u�.

4.9.2 SU(2) Reduced Operators

4.9.3 Checkpointing
Let's say you want to first run 3 moves on a 16-site la琀�ice: 7 100 0 -5 100 0 -2 100 0,
and then continue it with 2 more -7 200 0 7 200 0. 吀�en one needs to set up input files as
in TestSuite/inputs/input23.inp and TestSuite/inputs/input24.inp. Compile
and do the first run:

cd src/
perl configure.pl < ../TestSuite/inputs/model23.spec
(or say ModelHeisenberg and DiskStack)
make
./dmrg ../TestSuite/inputs/input23.inp

You are ready for the continuation of this run now with:

./dmrg ../TestSuite/inputs/input24.inp

Note that the continued run's input (input24.inp) has the option checkpoint, and the CheckpointFile-
name tag. Continued (raw) results will be in file data24 as usual.

Note the following caveat or ``todo'':

• 吀�ere's no check (yet) of finite loops for consistency while checkpoint is in use. 吀�erefore, make sure
the second run is starting at a point on the la琀�ice where the previous to-be-continued run le昀� off.

4.9.4 Distributed Parallelization

4.9.5 Shared-memory Parallelization

4.10 Static Observables
A quick run with the calculation of static observables can be done like so:

cd src/
perl configure.pl
(all default answers here)
make
make observe
./dmrg ../TestSuite/input2.inp
./observe ../TestSuite/input2.inp data2.txt

You will see something like this:

OperatorC:
8 16
0.5 0.426244 -2.84172e-08 ...
0 0.5 -0.252775 1.67222e-07 0.0586682 ...
...

This is work in progress 32

LO
C
A
L
C
O
PY

4.11. TIME EVOLUTION

Here we are computing 𝐶u�u� = ⟨𝑐u�↑𝑐u�↑⟩, where 816 are the dimensions of the matrix that follow (𝐶u�u� is not
computed for 𝑖 > 𝑗). For example 𝐶00 = 0.5, 𝐶01 = 0.426244, 𝐶12 = −0.252775.

吀�e same is done for 𝑁u�u� = ⟨𝑛u�𝑛u�⟩, where 𝑛u� = 𝑛u�↑ + 𝑛u�↓, and also for ⟨𝑆u�
u� 𝑆u�

u� ⟩
吀�e observer driver (observe.cpp) controls what is calculated. Please have a look at it and modify

as necessary.
THIS SECTION NEEDS MORE WORK. IN PARTICULAR HOW TO SETUP THE INPUT FILE TO BE

ABLE TO PRODUCE DATA FOR THE OBSERVER.

4.10.1 Ground State Energy and Error

4.10.2 Static Correlations

4.10.3 Observables Driver

4.11 Time Evolution

4.11.1 Time Evolution Input
TSPTau [RealType], 𝜏 for the Krylov, see [1] Section II.B and II.C.

TSPTimeSteps [Integer] 𝑛u� as defined in [1] Section II.B

TSPAdvanceEach [Integer] Number of sites to sweep before advancing to the next time.

TSPAlgorithm [String] Either Krylov or RungeKutta or SuzukiTrotter
Note that SuzukiTro琀�er is currently very experimental and unsupported.

TSPSites [VectorInteger] 吀�e first number is the number of numbers to follow. 吀�e following numbers are the
sites 𝜋′(0), 𝜋′(1), ⋯ where the operators to build state |𝜙⟩ should be applied; see Eq. (4) of [1]. 吀�ese
sites must be ordered by appearance in the DMRG sweeping.

TSPLoops [VectorInteger] 吀�e first number is the number of numbers to follow. 吀�e following numbers are the
delay (in units of finite loops) before evolving in time. Delaying the time evolution helps converge
the state |𝜙⟩.

TSPProductOrSum [String] Either product or sum indicating whether the operators 𝐵 in Eq. (4) of [1] should be
multiplied or summed. Note that Eq. (4) shows only multiplication.

TSPSkipTimeZero [Integer] Either 0 or 1 to indicate whether to skip the application of the time evolution at 𝑡 = 0. It is
ignored unless |𝜙⟩ is the ground state.

TSPEnergyForExp [RealType] Energy to use as origin for the exponential in the time evolution.

4.11.2 Operator Input
TSPOperator [String] Either cooked or raw to indicate how the operator will be specified.

COOKED_OPERATOR [String] A label naming the operator. 吀�is ismodel dependent andmust be listed in thenaturalOperator
function for the indicated in Model in this input file. Ignored unless TSPOperator was set to
cooked.

This is work in progress 33

LO
C
A
L
C
O
PY

CHAPTER 4. DEVELOPER'S GUIDE

COOKED_EXTRA [VectorInteger] 吀�e first number is the number of numbers to follow. 吀�e other numbers are de-
grees of freedom for the cooked operator mentioned, and are passed as arguments (in order) to
the naturalOperator function for the indicated in Model in this input file. Ignored unless
TSPOperator was set to cooked.

RAW_MATRIX [MatrixComplexOrRealType] 吀�e number of rows and columns of this matrix, followed by the matrix
in zig-zag format. Ignored unless TSPOperator was set to raw.

FERMIONSIGN [RealType] Either 1 or -1, indicating if this operator commutes or anticommutes at different sites.

JMVALUES [Integer*2] If not using 𝑆𝑈(2) symmetry this is 0 0. Else it is the 2𝑗 and 𝑗 + 𝑚 for this operator.

AngularFactor [RealType] If not using 𝑆𝑈(2) symmetry this is 1. Else FIXME.

LICENSE
Copyright (c) 2009 , UT-Battelle, LLC
All rights reserved

[DMRG++, Version 2.0.0]
[by G.A., Oak Ridge National Laboratory]

UT Battelle Open Source Software License 11242008

OPEN SOURCE LICENSE

Subject to the conditions of this License, each
contributor to this software hereby grants, free of
charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), a
perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to use, copy,
modify, merge, publish, distribute, and/or sublicense
copies of the Software.

1. Redistributions of Software must retain the above
copyright and license notices, this list of conditions,
and the following disclaimer. Changes or modifications
to, or derivative works of, the Software should be noted
with comments and the contributor and organization's
name.

2. Neither the names of UT-Battelle, LLC or the
Department of Energy nor the names of the Software
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission of UT-Battelle.

This is work in progress 34

LO
C
A
L
C
O
PY

4.11. TIME EVOLUTION

3. The software and the end-user documentation included
with the redistribution, with or without modification,
must include the following acknowledgment:

"This product includes software produced by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the
Department of Energy."

DISCLAIMER

THE SOFTWARE IS SUPPLIED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER, CONTRIBUTORS, UNITED STATES GOVERNMENT,
OR THE UNITED STATES DEPARTMENT OF ENERGY BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED
STATES DEPARTMENT OF ENERGY, NOR THE COPYRIGHT OWNER, NOR
ANY OF THEIR EMPLOYEES, REPRESENTS THAT THE USE OF ANY
INFORMATION, DATA, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

This is work in progress 35

LO
C
A
L
C
O
PY

CHAPTER 4. DEVELOPER'S GUIDE

This is work in progress 36

LO
C
A
L
C
O
PY

Bibliography

[1] G. Alvarez, L. G. G. V. Dias da Silva, E. Ponce, and E. Dago琀�o. Time evolution with the dmrg algorithm:
A generic implementation for strongly correlated electronic systems. Phys. Rev. E, 84:056706, 2011.

[2] G. De Chiara, M. Rizzi, D. Rossini, and S. Montangero. J. Comput. 吀�eor. Nanosci., 5:1277--1288, 2008.

[3] K. Hallberg. Adv. Phys., 55:477--526, 2006.

[4] C. Lanczos. J. Res. Nat. Bur. Stand., 45:255, 1950.

[5] D.G. Pe琀�ifor and D.L. Weaire, editors. 吀�e Recursion Method and Its Applications, Springer Series in
Solid-State Sciences, volume 58. Springer Verlag, Berlin/Heidelberg, 1985.

[6] J. Rodriguez-Laguna. h琀�p://arxiv.org/abs/cond-mat/0207340, Real Space Renormalization Group Tech-
niques and Applications, 2002.

[7] U. Schollwöck. 吀�e density-matrix renormalization group. Rev. Mod. Phys., 77:259, 2005.

37

	Quick Start
	Licensing
	DISCLAIMER
	How To Cite This Work
	Code Integrity
	Building and Running DMRG++
	Required Software
	Building DMRG++
	Running DMRG++

	Input
	Running DMRG++
	SolverOptions
	Geometry Input
	Model Input
	DMRG Solver parameters
	Finite Loops
	Enabling finite loops
	Example of a Finite loops line in the input file
	The third number in the triplet
	Caveats and Troubleshooting

	Output
	Standard Output and Error
	In-situ measurements
	The Observer Driver
	The Disk Stacks
	The Wft Data Files
	Signals
	SIGUSR1

	Developer's Guide
	Main Driver
	DMRG Engine
	DMRG Algorithm
	Driver Program
	DmrgSolver and The ``Infinite'' DMRG Algorithm
	Finite Algorithm

	Hilbert Space Basis I: DmrgBasis and Symmetries
	Local Symmetries
	Product of Spaces
	Left, Right, and Super
	SU(2) Symmetry

	Hilbert Space Basis II: DmrgBasisWithOperators
	Outer Product of Operators
	Truncation
	Lanczos Solver

	Model Interface
	Abstract Interface
	Heisenberg Model
	One-Orbital Hubbard Model
	Many-Orbital Hubbard Model
	t-J model

	Geometry Interface
	Abstract Interface
	One Dimensional Chains
	Ladders

	Concurrency Interface: Code Parallelization
	Abstract Interface
	MPI
	Pthreads
	CUDA

	Input and Output
	Input System
	DiskStack
	Program Output
	Test Suite

	Optimizations
	Wave Function Transformation
	SU(2) Reduced Operators
	Checkpointing
	Distributed Parallelization
	Shared-memory Parallelization

	Static Observables
	Ground State Energy and Error
	Static Correlations
	Observables Driver

	Time Evolution
	Time Evolution Input
	Operator Input

