
DMRGPP

Generated by Doxygen 1.8.5

Thu Dec 4 2014 13:29:27

Contents

1 Quick Start 1

2 Input 5

3 Signals 7

3.1 SIGUSR1 . 7

Chapter 1

Quick Start

Licensing

The full software license for DMRG++ version 2.0.0 can be found in file LICENSE in the root directory of the code.
DMRG++ is a free and open source implementation of the DMRG algorithm. You are welcomed to use it and publish
data obtained with DMRG++. If you do, please cite this work (see next subsection).

DISCLAIMER

THE SOFTWARE IS SUPPLIED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER, CONTRIBUTORS, UNITED STATES GOVERNMENT,
OR THE UNITED STATES DEPARTMENT OF ENERGY BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED
STATES DEPARTMENT OF ENERGY, NOR THE COPYRIGHT OWNER, NOR
ANY OF THEIR EMPLOYEES, REPRESENTS THAT THE USE OF ANY
INFORMATION, DATA, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

How To Cite This Work

@article{re:alvarez0209,
author="G. Alvarez",
title="The Density Matrix Renormalization Group for
Strongly Correlated Electron Systems: A Generic Implementation",
journal="Computer Physics Communications",
volume="180",
pages="1572-1578",
year="2009"}

@article{re:alvarez0310,

2 Quick Start

author="G. Alvarez",
title="Implementation of the SU(2) Hamiltonian Symmetry for the DMRG Algorithm",
journal="Computer Physics Communications",
volume="183",
pages="2226-2232",
year="2012"}

@article{re:alvarez0311,
author="G. Alvarez and L. G. G. V. Dias da Silva and
E. Ponce and E. Dagotto",
title="Time Evolution with the DMRG Algorithm: A Generic Implementation
for Strongly Correlated Electronic Systems",
journal="Phys. Rev. E",
volume="84",
pages="056706",
year="2011"}

@article{re:alvarez0713,
author="G. Alvarez",
title="Production of minimally entangled typical thermal states
with the Krylov-space approach",
journal="Phys. Rev. B",
volume="87",
pages="245130",
year="2013"}

And also:
@article{re:alvarez08,
re:webDmrgPlusPlus,
Author = {G. Alvarez},
Title = {DMRG++ Website},
Publisher = {\url{ http://www.ornl.gov/~gz1/dmrgPlusPlus}} }

Code Integrity

Hash of the latest commit is also posted at

https://web.ornl.gov/∼gz1/hashes.html

Building and Running DMRG++

Required Software

• Item GNU C++

• Item (required) The LAPACK library.

The configure.pl script will ask for the LDFLAGS variable to pass to the compiler/linker. If the linux platform
was chosen the default/suggested LDFLAGS will include -llapack. If the osx platform was chosen the de-
fault/suggested LDFLAGS will include -framework Accelerate. For other platforms the appropriate linker flags
must be given. More information on LAPACK is at http://netlib.org/lapack/

• Item (required) PsimagLite.

This is here https://github.com/g1257/PsimagLite/. You can do git clone https-
://github.com/g1257/PsimagLite.git in a separate directory outside of the DMRG++ distri-
bution. configure.pl will ask you where you put it.

• Item (optional) make or gmake (only needed to use the Makefile)

• Item (optional) perl (only needed to run the configure.pl script)

Generated on Thu Dec 4 2014 13:29:27 for DMRGPP by Doxygen

http://www.ornl.gov/~gz1/dmrgPlusPlus
https://web.ornl.gov/~gz1/hashes.html
http://netlib.org/lapack/
https://github.com/g1257/PsimagLite/
https://github.com/g1257/PsimagLite.git
https://github.com/g1257/PsimagLite.git

3

To Build DMRG++:

cd src
perl configure.pl
(please answer questions regarding depedencies and libraries)
make

To Run DMRG++:

./dmrg -f input.inp

Sample input files can be found under TestSuite/inputs/.

configure.pl creates the Makefile according to the answers to questions given. In the Makefile, LDFLAGS
must contain the linker flags to link with the LAPACK library. Defaults provided automatically by configure.pl should
work in most cases. If MPI is not selected (serial code) then the compiler will be chosen to be g++. Other compilers
may work but only the GNU C++ compiler, g++, was tested. If MPI is selected then the compiler will be chosen to
be mpicxx, which is usually a wrapper script around g++ to take care of linking with MPI libraries and to include MPI
headers. Depending on your MPI installation you might need to change the name of this script.

Generated on Thu Dec 4 2014 13:29:27 for DMRGPP by Doxygen

4 Quick Start

Generated on Thu Dec 4 2014 13:29:27 for DMRGPP by Doxygen

Chapter 2

Input

Introduction

There is a single input file that is passed as the argument to -f, like so

./dmrg -f input.inp.

Examples of input files can be found under TestSuite/inputs/ There are three kinds of parameters in the
input file: (i) model connections (“geometry”) parameters, (ii) model on-site parameters, and (iii) DMRG Solver
parameters. Each type of input parameters is discussed below.

Geometry Input

• TotalNumberOfSites=integer This is the total number of sites including bath sites (if any) and all system and
environment sites.

• NumberOfTerms=integer This is the number of Hamiltonian off-site terms. This number must match the
model’s expected number of terms. Note that each Hamiltonian off-site term can have a different geometry!

• DegreesOfFreedom=integer Degrees of freedom on which the connectors depend on.

• GeometryKind=string One of chain, chainEx, ladder, ladderx, ladderbath, ktwoniffour, or star.

• GeometryOptions=string Either none or ConstantValues needs to explain more FIXME

Model Input

The Model parameters vary from model to model.

DMRG Solver parameters

• Model=string A string indicating the model, be it HubbardOneBand HeisenbergSpinOneHalf, etc.

• Options=string A comma-separated list of strings. At least one of the following strings must be provided:

– none Use this when no options are given, since the list of strings must be non-null. Note that “none”
does not disable other options.

– useSu2Symmetry Use the SU(2) symmetry for the model, and interpret quantum numbers in the line
“QNS” appropriately.

– nofiniteloops Don’t do finite loops, even if provided under “FiniteLoops” below.

• version=string A mandatory string that is read and ignored. Usually contains the result of doing git
rev-parse HEAD.

6 Input

• outputfile=string The output file. This file will be created if non-existent, and if it exits it will be truncated.

• InfiniteLoopKeptStates=integer m value for the infinite algorithm.

• FiniteLoops=vector A series of space-separated numbers. More than one space is allowed. The first number
is the number of finite algorithm “movements,” followed by series of three numbers for each movement. Of the
three numbers, the first is the number of sites to go forward if positive or backward if negative. The second
number is the m for this “movement” and the last number is either 0 or 1, 0 will not save state data to disk and
1 will save all data to be able to calculate observables. The first movement starts from where the infinite loop
left off, at the middle of the lattice. See the below for more information and examples on Finite Loops.

• TargetElectronsUp=integer

• TargetElectronsDown=integer

Finite Loops

Enabling finite loops

To enable finite loops make sure that the option nofiniteloops is not present under SolverOptions=.
Remember that the entry FiniteLoops in the input file is a series of space-separated numbers. More than one
space is allowed. The first number is the number of finite algorithm “movements,” followed by series of three
numbers for each movement. Of the three numbers, the first is the number of sites to go forward if positive or
backward if negative. The second number is the m for this movement and the last number is either 0 or 1, 0 will not
save state data to disk and 1 will save all data to be able to calculate observables. The first movement starts from
where the infinite loop left off, at the middle of the lattice.

Example of a Finite loops line in the input file

FiniteLoops 4 7 200 0 -7 200 0 7 200 1 7 200 1

The number 4 implies 4 finite loops. The first fine loop is 7 200 0, meaning go forward 7 steps, use m=200 for
this finite sweep, and 0: do not store transformation in disk. The next is -7 200 0, which goes backwards 7 sites,
etc. Remember that the finite loops start at the middle of the lattice, where the infinite loop left off. ADD FIGURE
SHOWING WHAT THIS DOES.

The third number in the triplet

The save option is a bitwise option where the first bit means “save or don’t save,” and the second bit “compute the
g.s. or WFT it.” So there are 4 combinations (as of today):

Value Description
0 Don’t save, compute the ground state
1 Save, compute the ground state
2 Don’t save, WFT the ground state
3 Save, WFT the ground state

Caveats and Troubleshooting

If nofiniteloops is an option in the options line of the input file then the FiniteLoops line in the input file is
ignored, and no finite loops are done. In this case, DMRG++ stops when the infinite algorithm has finished.

Make sure the first number is the number of triplets that follow.

Make sure you don’t fall off the lattice, by going forward or backwards too much. Remember that at least one site
must remain for the system part of the lattice. So on a 16 site chain, when you start the finite loops you’re at the
middle, you can go forward at most 7 sites, and backwards at most 7 sites.

There is some checking done to the finite loops input, see PTEXREF{139}, but you might find that it’s not compre-
hensive.

Generated on Thu Dec 4 2014 13:29:27 for DMRGPP by Doxygen

Chapter 3

Signals

PLEASE NOTE: This is an experimental (CITATION NEEDED FIXME) feature. To use it you must add -DUSE_S-
IGNALS to CPPFLAGS in the Makefile.

3.1 SIGUSR1

Rationale: When running a process in a queue batching system the standard output and standard error might be
buffered, and, thus, might not be seen until program completion. DMRG++ allows the user to store (a fragment of)
the stdout and stderr buffers into a temporary file to monitor program process in situations where stdout and stderr
would not normally be accessible.

Sending the signal SIGUSR1 to the DMRG++ process will result in switching the state of the ProgressIndicator
buffer: if the state was inactive it will become active, and viceversa. Only when the state of the ProgressIndicator
buffer is active does ProgressIndicator store its stream in memory. This stream contains the standard output and
standard error printed by DMRG++. When the state of the ProgressIndicator is switched back from active to inactive,
DMRG++ dumps the buffer into a temporary file, and closes the buffer. The temporary file is named bufferN.txt where
N is the PID of the DMRG++ process.

HINT: qsig might be used to send a signal if the DMRG++ process is running in PBS or torque.

CAVEATS: Leaving the buffer on for long periods of time might cause high memory consumption. The temporary
buffer file is overwritten if the buffer is used more than once by the same process. The temporary buffer file is not
deleted at the end of program execution.

	Quick Start
	Input
	Signals
	SIGUSR1

