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Experiment and Theory
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The Roadblocks Motivation

Atoms and Electrons

Electrons in Matter are often easy to study.. . .

But not always.

Some materials are difficult to study
For example,

superconductors
magnetic materials,
quantum dots
nanostructures with transition metal oxides.

They are also technologically useful.
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The Roadblocks Motivation

How do electron correlations cause functionality?

Answer: By having different phases,
usually close in energy.

These phases present one order that can
be easily (energetically speaking) turned

into another.∗

∗ See Dagotto, 2005.
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The Roadblocks Motivation

What causes the energetically-close phases?

Answer: The competition between spin
and orbital degrees of freedom.

This competition originates in the strong
correlation between electrons.

Strongly
correlated
materials

complicated phases

complex methods
to explain

simpler materials easier to explain

G. Alvarez (CNMS, ORNL) Computing Correlated Electrons APS MM Denver, Co., 2014



The Roadblocks Motivation

What causes the energetically-close phases?
Answer: The competition between spin

and orbital degrees of freedom.

This competition originates in the strong
correlation between electrons.

Strongly
correlated
materials

complicated phases

complex methods
to explain

simpler materials easier to explain

G. Alvarez (CNMS, ORNL) Computing Correlated Electrons APS MM Denver, Co., 2014



The Roadblocks Motivation

What causes the energetically-close phases?
Answer: The competition between spin

and orbital degrees of freedom.

This competition originates in the strong
correlation between electrons.

Strongly
correlated
materials

complicated phases

complex methods
to explain

simpler materials easier to explain

G. Alvarez (CNMS, ORNL) Computing Correlated Electrons APS MM Denver, Co., 2014



The Roadblocks Motivation

What causes the energetically-close phases?
Answer: The competition between spin

and orbital degrees of freedom.

This competition originates in the strong
correlation between electrons.

Strongly
correlated
materials

complicated phases

complex methods
to explain

simpler materials easier to explain

G. Alvarez (CNMS, ORNL) Computing Correlated Electrons APS MM Denver, Co., 2014



The Roadblocks Motivation

What causes the energetically-close phases?
Answer: The competition between spin

and orbital degrees of freedom.

This competition originates in the strong
correlation between electrons.

Strongly
correlated
materials

complicated phases

complex methods
to explain

simpler materials easier to explain

G. Alvarez (CNMS, ORNL) Computing Correlated Electrons APS MM Denver, Co., 2014



The Roadblocks Exponential Complexity

Why are these materials costly to study?

Answer: Because the “standard one-electron
model” of metals breaks down.

Therefore, an accurate approach to study
strongly correlated materials is needed.

And accurate approaches are costly.
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The Roadblocks Exponential Complexity

The Exponential Problem in Second Quantization

H =
∑
i,j

〈i |K̂ |j〉c†i cj +
∑
i,j,k ,l

〈ij |Ĥe−e|kl〉c†i c†j ckcl

Example: 6 sites, 2 electrons leads
to C6

2 = 15 states For large N we have
Stirling’s approximation

N!→
√

2πN
(

N
e

)N
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The Roadblocks Exponential Complexity

What does exponential really mean?

Assume Nf “flavors” or orbitals (including
spin), N sites
Assume no symmetries (won’t change the
argument much)
Then complexity is 2N×Nf .

Assume a more or less realistic problem:
Nf = 10, N = 10
Exact diagonalization would take ≈ 106

billion years to complete
Problem not even in NP...
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The Roadblocks Exponential Complexity

Hamiltonian Complexity: Not even in NP!
NP problems are problems
where a solution can be
verified in polynomial time.

Given ~v one cannot verify in
polynomial time if it’s an
eigenvector of H.. . . Because
H has rank exponential in the
number of sites.
The Hamiltonian problem is in
class Quantum Merlin Arthur∗

NP hard

NP-complete

NP

P

If NP 6= P

∗See Schuch et al., 2008 Schuch and Verstraete, 2009
Cubitt and Montanaro, 2013 Osborne, 2013
Liu et al., 2007 Aharonov and Naveh, 2002
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The Roadblocks DMRG: Idea and Applications

Renormalization Group

4

empty
up

down
up + down

4

×4 ×4× · · ·

1 block 1 block

2 blocks
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The Roadblocks DMRG: Idea and Applications

Density Matrix Renormalization Group

For 1D systems exponential problem can be avoided.

Algorithm: “Density Matrix Renormalization Group”
White, 1992, White, 1993

system environment

Discard (an exponential number of) states. Keep m states in
Hibert space at all times.
Controlled error, exponentially decaying with m for most 1D
systems.
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The Roadblocks DMRG: Idea and Applications

Why does the DMRG work...
...when it does, and doesn’t when it doesn’t?

How fast?

αstates

drop these

consider these

(r
an

k
in

g
)

ρ

A B
system environ. }Ly

How much entanglement between A and B?

A: Roughly equal to the area between A and B.
1D: Entropy→ S ≈ 1→ complexity = expS = const .
2D: Entropy→ S ≈ Ly → complexity = expLy = exponential

You : Hey! You’re handwaving!
Me : OK, OK, see: Eisert et al., 2010
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The Roadblocks DMRG: Idea and Applications

Applications of the DMRG

Spin systems quantum Heisenberg model
Fermionic systems Hubbard, t-J models
Quantum chemistry,

White and Martin, 1999

Polymers
Lepetit and Pastor, 1997
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The Roadblocks DMRG: Idea and Applications

Only Two Methods: DMRG and QMC

Approx. Exact

Method must become exact systematically

Item DMRG QMC
Complexity Pol. in 1D, Exp. in 2D Pol., Exp. if SP∗

Real time and freq. Yes No
Finite temperature Possible Yes
Active Research Yes Yes

∗SP stands for Sign Problem
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The Roadmap

1 The RoadBlocks: Motivation, Problems
and Solutions

2 The Roadmap: Time, Temperature, and
Dynamics

3 The Road Ahead: Computation and Our
Strategic Vision
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The Roadmap Time Evolution

Roadmap: Time, Temperature, and Dynamics

Time
Temperature
Dynamics
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The Roadmap Time Evolution

Time Evolution: Mott Insulators for Solar Cells

Time propagation of an electronic excitation

left lead MI right lead
τ < 0

τ = 0

τ > 0

Adapted from da Silva et al., 2010

For a review see Manousakis, 2010 and references
therein
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The Roadmap Time Evolution

We use Krylov-space Time Evolution

Tridiagonalize H = V †TV starting Lanczos with |φ〉.
V is the matrix of Lanczos vectors and T is tridiagonal.

exp(αH)|φ〉 = exp(αV †TV )|φ〉 = V † exp(−iTt)V |φ〉

Diagonalize T = S†DS, where D diagonal.
Finally,∗ compute the evolution with

exp(αH)|φ〉i =
∑

k ,k ′,k ′′,j

V ∗i,kS†k ,k ′ exp(αdk ′)Sk ′,k ′′Vj,k ′′ |φ〉j

∗ This is within a DMRG method, so don’t forget to target the
appropriate states. For an implementation, see Alvarez et al., 2011.
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The Roadmap Time Evolution

Time Evolution: Our Theory Work

Accuracy of tDMRG

0 1 2 3 4
time --->

0.0

0.2

0.4

0.6

0.8

1.0 p=24 Exact

p=24 DMRG

p=25 exact

p=25 DMRG

p=20 exact

p=20 DMRG

U = 0

Alvarez et al., 2011

Propagation of a holon-doublon

da Silva et al., 2010

For our theory work on time evolution, see also
da Silva et al., 2012, da Silva et al., 2013, Al-Hassanieh et al., 2013.
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The Roadmap Temperature Dependence

Time, Temperature, and Dynamics

Time
Temperature
Dynamics
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The Roadmap Temperature Dependence

Minimally entangled typical thermal states

Problem: At T > 0 mixing of
states leads to entanglement.
|ψ〉 =

∑
E exp(−βE)|E〉

Previous work on DMRG at
T > 0: Verstraete et al., 2004,
Zwolak and Vidal, 2004,
Feiguin and White, 2005

New Solution: Minimally
entangled typical thermal
states (METTS) White, 2009

Stoudenmire and White, 2010

Classical state

Minimally entangled
typical thermal state

Thermal ensemble

Thermalize
e−βH/2

Quantum
measurement

of spins

Adapted from Schollwöck, 2009
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The Roadmap Temperature Dependence

Temperature Dependence: Our Work

H =
∑
i,j,σ

tijc
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iσcjσ +

∑
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Both figures are from Alvarez, 2013.
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Temperature Dependence: Our Work
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The Roadmap Dynamics

Time, Temperature, and Dynamics

Time
Temperature
Dynamics Real Frequency Properties

G. Alvarez (CNMS, ORNL) Computing Correlated Electrons APS MM Denver, Co., 2014



The Roadmap Dynamics

Compute S(k , ω), N(~r , ω), σ(ω) with DMRG

Methods

Evolve in time, then Fourier transform into ω
White and Affleck, 2008

Continued fraction approach Hallberg, 1995

ρ(ω) = 〈gs|S−q
1

ω + iδ − (H − E0)
S+

q |gs〉

Correction vectors Kühner and White, 1999,
Pati et al., 1999, Küner et al., 2000.
Other methods. Active area of research

Jeckelmann, 2002, Dargel et al., 2011,
Dargel et al., 2012.
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The Roadmap Dynamics

Nanoscale Emergent Electronic Patterns in Cuprates

Spin and charge stripes
Tranquada et al., 1995, Mook et al., 2002

Checkerboard
charge modulations

Hanaguri et al., 2004 Random
superconducting
gap modulations

Lang et al., 2002

Gomes et al., 2007
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The Roadmap Dynamics

DMRG as an “impurity” solver
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The Road Ahead

1 The RoadBlocks: Motivation, Problems
and Solutions

2 The Roadmap: Time, Temperature, and
Dynamics

3 The Road Ahead: Computation and Our
Strategic Vision
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The Road Ahead Our Computational Work

Our Computational Work

User Program at CNMS benefits from our
effort to develop codes for correlated
electrons Alvarez, 2009, Alvarez, 2012

DMRG++ and similar codes are free and
open source software
Publishing computer code is now
recommended by most funding agencies
Let us not throw it over the wall:

Software available at github.com
Same code I use
Updates don’t break what works
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The Road Ahead High Performance Computing

High Performance Computing

Is Moore’s law over? Sutter, 2005

Then we sure must use concurrency, right?
But only some problems are parallel; see
Parallel DMRG Stoudenmire and White, 2013

Maybe we should use hybrid hardware with
better memory bandwidth?
But hardware landscape (GP-GPUs) is
challenging given our aims
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The Road Ahead Our Aims

Our Computational Work: Our Aims

We develop only free and open source
software
We want the same code working across
architectures
We use C++, pthreads, and MPI
We are considering the D programming
language Alexandrescu, 2010 dlang.org
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The Road Ahead Our Strategic Vision

The Road Ahead: Our Strategic Vision

Implement parallel DMRG1

Work towards 2D DMRG
Develop a matrix product states code
Stay at the vanguard of renormalization methods2

1 Stoudenmire and White, 2013
2 Corboz and Vidal, 2009,
Evenbly and Vidal, 2009,
Koenig et al., 2009, M. Aguado, 2008

M. Rizzi, 2008, Pfeifer et al., 2009,
Vidal, 2008, Barthel et al., 2009,
Kraus et al., 2010
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The Road Ahead Opportunities at ORNL

Opportunities at ORNL

Diversity in Recruiting Efforts at ORNL
RAMS (Research Alliance in Mathematics and Science)
GEM (Graduate Education for Minorities)
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Summary

Summary: Our Aims

Accuracy: Only use methods that can systematically be improved

Breadth: Simulate as many experiments as possible: time,
temperature, dynamics, etc.

Detail: Provide technical and computational resources to the
community

DMRG++: https://web.ornl.gov/~gz1/dmrgPlusPlus/
Free and open source codes for DMRG, Lanczos, FreeFermions,
and spin-phonon fermion models: https://web.ornl.gov/~gz1/
This talk is at https://web.ornl.gov/~gz1/talks/
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Produced with LATEX and the Beamer package
with a custom theme.

Tikz was used for some figures.
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