Acceleration and Phase Stability

Second Chapter
First Class

August 30, 2004
Types of Accelerators

- **DC Accelerators:**
 - Get DC beams of low energy and narrow energy spread
 - Cockcroft-Walton
 - Charge Capacitors in Parallel
 - Discharge in Series
 - ~750 keV
 - Front ends on high energy accelerators until RFQs
 - Tandem Van de Graaff
 - Transport charges on insulating belt to high voltage terminal
 - ~15 MeV
 - Limited by high voltage breakdown
 - Can double the voltage with stripper foil – tandem
 - Can’t make circular DC accelerator - \(\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \)
Types of Accelerators

- **AC Accelerators:**
 - **Induction Accelerators**
 - **Induction linear accelerators (linacs)**
 - High Intensity
 - Up to a few MeV
 - **Betatron**
 - Get constant orbit radius
 - Energy limited by monotonic increase of flux
 - **RF Accelerators**
 - **RF linacs**
 - Highest energy electron accelerators
 - Preacceleration for synchrotrons
 - **Cyclotrons**
 - Big magnets
 - Split RF cavities called “Dee”s
 - Spiral orbit
 - Energies to several hundred MeV
 - **Synchrotrons**
 - Strong focusing
 - Highest energies for protons - TeV
 - Electron light sources

\[\dot{\Phi} = 2\pi r^2 B \]
RF Cavities

- RF Cavities are highly metallic conducting cavities that can support an infinite number of electromagnetic wave solutions.

- The boundary conditions for these solutions are approximately conducting walls.

- Although there are an infinite number of solutions, we want a low order solution with strong E_z, where the beam travels in the z direction. A good choice is the TM_{010} mode.

- There are a few figures of merit that are used to describe RF cavities:
 - The transit time factor relates the actual energy boost to the energy boost from a fixed (in time) field
 - The Q of the cavity relates the loss rate due to resistivity of the walls to the energy stored in the fields inside the cavity.
 - The shunt impedance relates the energy gain per unit charge in the beam to the resistive loss rate.

- For proton or ion synchrotrons, it is usually necessary to adjust the cavity frequency as the beam is accelerated.
Accelerating Structures

• There is a variety of ways to arrange cavities into individual or multicell accelerating structures.

• Accelerating structures can be driven independent RF sources for each cavity, or a single source can drive multiple cavities.

• The relationship between phases in successive cavities is of critical importance – the fields are time varying and they must be aligned with the beam as it passes through.

• Because the cavity fields vary in time, it is necessary to use bunched, rather than continuous, beams.

• In electron linacs, traveling waves are used to accelerate the beam. It is necessary to slow their phase velocities, which are greater than c, using disks inserted into the waveguide.
Homework:
Assignment due Tuesday, 09/14/2004

- Read Edwards and Syphers, Chapter 2 through page 41.

- Problems, due Tuesday, 09/14/2004:
 - 2.1
 - 2.2
 - 2.3
 - 2.4
 - 2.5
 - 2.7