

Lawrence Berkeley National Laboratory

Impacts of Root Hydraulic Redistribution on Site, Regional, and Global Evapotranspiration and Soil Moisture

W.J. Riley

Jinyun Tang, Jie Niu

Earth Sciences Division Lawrence Berkeley National Laboratory

Root Hydraulic Redistribution

Amenu and Kumar (2008)

Background

- Lee et al. (2005), Wang (2011)
 - Root Hydraulic Redistribution (RHD) increases ET and photosynthesis during dry season
 - Enhances ground water depletion and recharge
 - Modifies regional climate
- Amenu and Kumar (2008)

 Deep root hydraulic redistribution enhances the connection between surface and ground water

Objectives

- Evaluate impacts of RHD on hydrological states and fluxes
 - Implement RHD in CLM4.5 using the Amenu-Kumar model
 - Test impacts of numerical implementation
 - Test impacts of rooting distribution, depth, and properties
 - Test impacts of pedotransfer function, including for oxisols

The Amenu-Kumar (2008) Model of RHD

Sequential Coupling vs. Tight Coupling

Sequential model

• Process-splitting method Step 1: solve Richards' equation

Tightly coupled model

• Form and solve coupled system

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[K_{sh} \left(\frac{\partial \psi_{sm}}{\partial z} - 1 \right) \right] - K_{rh,rad} \left(\psi_{sm} - \psi_{rp} \right)$$

Step 2: solve root model

$$0 = \frac{\partial}{\partial z} \left[K_{rh,ax} \left(\frac{\partial \psi_{rp}}{\partial z} - 1 \right) \right] + K_{rh,rad} \left(\psi_{sm} - \psi_{rp} \right)$$

Sequential Model (SM) Has Large Sensitivity to Time Step

Sequential Coupling vs. Tight Coupling: Non-Physical Changes in Global ET

Blodgett Forest Site

http://journalism.berkeley.edu/

http://fluxnet.ornl.gov/

Hydraulic redistribution affects seasonal soil moisture (Blodgett)

Tapajos site

From: http://hydrodictyon.eeb.uconn.edu/

From: http://daac.ornl.gov/LBA

Tapajos Site LH Evaluation

Impacts on Soil Moisture

Tapajos KM83 Soil Moisture @ 10cm

Month

CLM Amazon Hydrology

- Pedotransfer function based on Cosby et al. or Noihan and Lacarrere (1995) do poorly for Amazon soils (Delire et al. 1997)
- CLM underestimates clay fraction in Amazon
- No account in CLM for preferential flow, which can be important
- Differences in climate forcing

Impacts of Oxisols in the Tropics

Impacts of RHD in CLM4.5 Compared to FLUXNET-MTE LH Flux

Summary

• Blodgett Forest

- Correct numerical solution gave poorer fit to LH observations
- RHD improved fit to LH but gave poorer soil moisture prediction
 - Comparable to Amenu and Kumar (2008) results
- Tapajos and Tropics
 - Deep roots improved ET seasonal cycle
 - Oxisol pedotransfer function resulted in ~small ET change
- Climate forcing has large impact on interpretation of mechanisms
- For a full hydrological evaluation, CLM needs restructuring to account for flexible formulations of pedotransfer function, root depth profile, soil resistance, root water uptake, etc.

Acknowledgements

• This work was supported by the U.S. DOE

LH Evaluation Against FLUXNET-MTE

Jinyun:

- what component of the forcing creates the ~10 W/m2 difference in LH between Qian and CRU forcing around 0 degrees?
- 2. HD has higher bias than default. Why? How do we argue about the benefits of including HD if it makes the simulation worse?
- Lee et al get ~40% increase in dry season LH. Is that about the same here?
- 4. Lee et al also argue that greater storage