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Introduction

Summary

Experimental evidence from a diverse set of forested ecosystems indicates that
CO; enrichment may lead to deeper rooting distributions. While the causes of
greater root production at deeper soil depths under elevated CO, concentration
([CO,)) require further investigation, altered rooting distributions are expected to
affect important ecosystem processes. The depth at which fine roots are produced
may influence root chemistry, physiological function, and mycorrhizal infection,
leading to altered nitrogen (N) uptake rates and slower turnover. Also, soil pro-
cesses such as microbial decomposition are slowed at depth in the soil, potentially
affecting the rate at which root detritus becomes incorporated into soil organic
matter. Deeper rooting distributions under elevated [CO,] provide exciting oppor-
tunities to use novel sensors and chemical analyses throughout the soil profile to
track the effects of root proliferation on carbon (C) and N cycling. Models do not
currently incorporate information on root turnover and C and N cycling at depth in
the soil, and modification is necessary to accurately represent processes associated
with altered rooting depth distributions. Progress in understanding and modeling
the interface between deeper rooting distributions under elevated [CO,] and soil C
and N cycling will be critical in projecting the sustainability of forest responses to
rising atmospheric [CO,].

expected to increase carbon (C) and nitrogen (N) allocation
to fine roots, especially in N-limited forests (Norby & Jack-

Belowground processes are increasingly recognized as an
important foundation for ecosystem responses to rising
atmospheric CO, concentration ([CO,]). Fine roots (i.e.
roots < 2 mm in diameter) are important in water and
nutrient uptake, and are the main interface between trees
and the soil ecosystem. Because of their intimate association
with the soil profile, fine-root inputs are often more impor-
tant than leaf litter in driving soil organic matter accumula-
tion (Russell er al, 2004). Rising atmospheric [CO,] is
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son, 2000). Increased fine-root allocation could drive
changes in soil C storage and N cycling because fine roots
turn over quickly in forests (Gill & Jackson, 2000), and
contribute a large amount of C and N to the soil system
(Iversen et al., 2008).

Experimental evidence from a diverse set of forested eco-
systems indicates that fine roots of trees exposed to elevated
[CO,] are distributed more deeply in the soil profile relative
to trees grown under ambient [CO,] (Table 1). A multitude
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of important soil properties change with soil depth; for
example, oxygen content, soil moisture, bulk density, tem-
perature and soil texture (Schenk, 2005). Thus, as soil depth
increases, microbial activity, nutrient availability, and root
decomposition rates often decline (Gill & Burke, 2002).
While rooting depth distribution under elevated [CO,] was
described as a major unknown 15 yr ago (Rogers ez al,
1994), the consequences of increased fine-root proliferation
and turnover at depth are still poorly understood; this is in
part because belowground research is often truncated at rela-
tively shallow soil depths (c. 20 cm). The objective of this
review is to examine the potential mechanisms for, and con-
sequences of, deeper rooting distributions under elevated
[CO,] as they relate to ecosystem C and N cycling. The
main focus is on forest ecosystems exposed to elevated
[CO,] in relatively intact soil systems (i.e. free-air CO,
enrichment experiments and open-top chambers).

Evidence for deeper rooting distributions under
elevated [CO,]

Deeper rooting distributions under elevated [CO,] have
been observed in a variety of experiments and ecosystems,
ranging from free-air CO, enrichment (FACE) experiments
in mature forest plantations to tree seedlings and saplings
planted in open-top chambers (Table 1). Fine roots devel-
oped under elevated [CO,] are not necessarily found deeper
in the soil than fine roots developed under ambient [CO,].
Rather, the relative increase in root production under ele-
vated [CO,] is often greatest below ¢. 15 cm depth, result-
ing in a larger proportion of root biomass at deeper soil
depths under elevated [CO,] (Table 1). For example, in a
FACE experiment in a sweetgum (Liquidambar styraciflua
L.) plantation, Iversen ez al. (2008) found that, over 9 yr,
there was a 220% stimulation in cumulative C inputs from
fine roots under elevated [CO;] at 45-60 cm soil depth,
compared with a 30% stimulation of root C inputs at
0-15 cm depth. At least half of root-derived C and N
inputs in this sweetgum plantation were deeper than 30 cm
under elevated [CO,]. Pritchard et 2/ (2008a) found a
similar response in a COs-enriched loblolly pine (Pinus
taeda L.) plantation, where elevated [CO,] resulted in a
larger stimulation of root production at 15-30 cm depth
compared with 0-15 cm depth. Deeper rooting distri-
butions under elevated [CO,] have also been observed in
seedlings in pot studies (1.6-m-deep pots; Derner ez al.,
2005). Of those experiments that examined rooting depth
responses to elevated [CO,], 73% found deeper rooting
distributions (Table 1).

While rooting depth is functionally determined by spe-
cies and ecosystem type (Jackson ez al., 1996), observations
of rooting responses at depth in the soil are limited by the
effort applied and the technology used. For example, the
minirhizotrons used by Pritchard ez /. (2008a) reached to
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only ¢. 30 cm, and the authors indicated that deeper tubes
were recently installed to determine whether rooting
responses deeper than 30 cm exist. Iversen ez a/. (2008) and
Pritchard ez 2/ (2008a) both used minirhizotron technol-
ogy to determine root dynamics in mature forest planta-
tions, but investigations of root dynamics in other
experiments have used methodology ranging from soil cor-
ing to in-growth cores (Table 1).

Deeper root distribution under elevated [CO,] appears to
be a relatively dynamic response. Root proliferation at depth
did not occur in all experiments exposed to elevated [CO,]
(Table 1), and when it did occur, it was both dynamic (i.e.
occurring in some treatment years and not others; e.g. Day
et al., 2006; Iversen et al., 2008; Liberloo ez al., 2009) and
species-specific (e.g. occurring in two poplar clones, but not
a third, in Lukac ez /., 2003). Deeper rooting distributions
have also been observed under elevated [CO,] without an
overall increase in root production (i.e. a redistribution of
roots belowground; cf. Johnson e al, 2006). Increased
proliferation at depth in the soil has not been limited to fine
roots; increased production of mycorrhizas (Pritchard ez 4/,
2008b) and coarse roots (Liberloo ef al, 2006) also
occurred deeper in the soil under CO; enrichment.

A historical focus on roots in shallower soils (i.e. the
‘plow layer’) contributes to the fact that rooting depth
responses remain unexamined or unreported in many CO,-
enrichment studies (Table 1). For example, it was assumed
at the start of the sweetgum FACE experiment that the
roots had fully occupied the soil volume in the closed-can-
opy stand (Norby ez al., 2004); the subsequent capture of
the rooting depth response was largely fortuitous and a
consequence in large part of the depth at which the minirhi-
zotron tubes were installed.

Potential causes of deeper rooting distributions
under elevated [CO,]

While much work has been done to examine root prolifera-
tion in the soil in response to resource patches (reviewed in
Hodge, 2004), the causes of increased root proliferation
throughout the soil under elevated [CO,] remain relatively
unexplored (Pritchard ez al, 1999). A conceptual diagram
(Fig. 1) may serve as a framework for future hypothesis
testing to determine the potential mechanisms for, and
feedbacks from, greater root production at depth in a CO,-
enriched atmosphere. Deeper rooting distributions under
elevated [CO,] are probably related to three factors:
increased resource demand as forest production increases in
response to CO, enrichment; increased C available for allo-
cation to root growth; and limited resource availability in
shallower soil as a result of increased microbial or plant
competition. These three factors will probably interact to
control root ‘decisions’ (i.e. Hodge, 2009) that determine
root distribution throughout the soil profile.
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Fig. 1 A conceptual model of the processes
leading to deeper rooting distributions under
elevated CO, concentration ([CO,]) (solid
lines), and potential feedbacks from the pro-
duction of deeper roots (dashed lines).
Deeper rooting distributions in CO,-enriched
forests are probably a result of three interact-
ing factors: (a) increased resource demand by
trees, (b) greater carbon (C) available for
allocation belowground, and (c) increased
competition for scarce resources in shallower
soil from microbes or other roots. | have spe-
cifically chosen to use the phrase ‘resources’
in the conceptual model rather than ‘nutri-
ents' to indicate that essential plant resources
other than nutrients (e.g. water) may also
control rooting distributions under elevated
[CO,l

at depth:

Increased C allocation to fine roots under elevated [CO,]
is mainly observed in nutrient-limited forest ecosystems
(Table 1). Further, CO, enrichment has increased plant
demand for nutrient acquisition in a number of forests
(Finzi et al., 2007). Roots often proliferate throughout the
soil in response to patches of nutrient availability (Prior
et al., 2003; Hodge, 2004), and it stands to reason that
mining for nutrients is one of the main reasons for greater
root proliferation in deeper soil under elevated [CO,]
(Fig. 1a). Others have shown that nutrients are available for
plant uptake at depth in the soil (Jobbagy & Jackson, 2001;
McKinley ez al., 2009), and that the proliferation of new
roots can stimulate the mineralization of older organic mat-
ter (i.e. priming; Dijkstra & Cheng, 2007). However, there
is still much uncertainty regarding the cues for root prolifer-
ation throughout the soil, as well as the benefits from such
proliferation (Hodge, 2004), and little work has been done
to examine root proliferation at depth in the soil in response
to nutrients. Roots also proliferate in water zones (Hodge,
2004), and greater root production at depth may also occur
in response to increased tree water use under elevated
[CO,] (Uddling ez al., 2008). However, water limitations
may be rarer under elevated [CO,] if decreased stomatal
conductance at the leaf level (Medlyn ez al., 2001) results in
less transpiration at the canopy level.

No claim to original US government works
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Terrestrial ecosystems are often limited by multdple
factors, including light and nutrient availabilicy (Fahey
et al., 1998). In nutrient-limited forest ecosystems, greater
C fixation in response to rising atmospheric [CO,] may
help to alleviate previous constraints on root development
and resource acquisition (Pritchard e al, 1999; Sttt &
Krapp, 1999). Cost-benefit models have been used to
explain root construction and maintenance (Eissenstat
et al., 2000), and C gains under elevated [CO,] may shift
the cost-benefit balance in favor of root production
(Fig. 1b), especially in deeper soil where the benefit of
smaller resource gains may have previously been out-
weighed by C costs. The benefit of root proliferation at
depth may be further enhanced by strong competition from
microbes, and intra- and interspecific interactions with
other plant roots, for limited resources in shallower soil
(Fig. 1c), especially as increased litter inputs under elevated
[CO,] are expected to increase microbial immobilization of
available nutrients (Zak et /., 2000).

Plant root systems are controlled by complex interactions
between genetic constraints and environmental conditions
(Nibau ez al., 2008). Thus, differences in the rooting depth
distributions observed under elevated [CO,] across a range
of experiments (Table 1) are probably determined by the
interplay between genetically determined species character-
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istics such as plant physiology, biochemistry, and root archi-
tecture (Bradley & Pregitzer, 2007; Nibau ez al., 2008),
and ecosystem properties such as climate and soil texture
(Jobbagy & Jackson, 2000), resource heterogeneity (Prior
et al., 2003), and water table depth (Imada ez al., 2008).
For example, this review focuses on forested ecosystems,
but, in contrast to forests, crop and grassland ecosystems
tend to have shallower rooting distributions under elevated
[CO,] (as reviewed in Arnone et al., 2000; Pritchard &
Rogers, 2000). Elevated [CO,] has been shown to stimulate
the development of lateral roots (Crookshanks ez al., 1998;
Pritchard ez al., 1999). Therefore, root proliferation in shal-
lower soils may be the result of shallower rooting distribu-
tions in crop and grassland ecosystems compared with those
in forested ecosystems (Jackson er al., 1996), or shallower
rooting distributions in annual compared with perennial
plants (Holmes & Rice, 1996). Greater access to nutrients
or water at shallower soil depths in crop or grassland ecosys-
tems (Prior ez al., 2003; Nippert & Knapp, 2007) may also
help to explain the contrasting response.

Potential consequences of deeper rooting
distributions under elevated [CO5]

While pinpointing the mechanisms of deeper rooting
distributions under elevated [CO,] requires more experi-
mentation, the potential consequences of increased root
production at depth can be inferred from current know-
ledge regarding changing ecosystem processes with soil

depth.

Root form and function

The depth at which fine roots are produced may influence
intrinsic root properties (Fig. 1). For example, roots pro-
duced in deeper soils tend to have a lower risk of mortality
(Wells ez al., 2002; Guo ez al., 2008). Roots in deeper soil
also often have increased diameter (Wells ef al, 2002),
lower average root N concentration (Pregitzer et al., 1998),
and decreased root respiration rates (Pregitzer et al., 1998).
Changes in root form and function at depth in the soil may
interact with reduced root [N] and maintenance respiration
expected to occur under elevated [CO,] (i.e. Eissenstat
et al., 2000). Altered root chemistry and physiology may in
turn result in altered N uptake rates (Géransson ez al,
2008), slowed rates of C and N input to the soil as a result
of increased root longevity (Joslin ¢z /., 2006), and reduced
decomposability (Cotrufo & Ineson, 1995).

Deeper rooting distributions under elevated [CO,] may
also affect root infection by symbionts (Fig. 1). Mycorrhizal
fungi, which receive a significant portion of the C taken up
by the host plant in exchange for nutrient uptake, are
important players in ecosystem C and nutrient cycling. Fur-
ther, mycorrhizal abundance has been shown to increase up
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to 50% in response to elevated [CO,] (Treseder, 2004).
Mycorrhizal colonization is closely related to root distribu-
tion in the soil across multiple biomes, and, while infection
rates tend to decline with soil depth in natural ecosystems
(Treseder & Cross, 2006), there is evidence that both ecto-
mycorrhizas and arbuscular mycorrhizas increase root infec-

tion rates deeper in the soil profile in response to elevated
[CO,] (Rillig & Field, 2003; Pritchard ez al., 2008b).

Root inputs and soil organic matter cycling

The vertical distribution of organic matter and nutrients in
the soil is strongly related to rooting patterns (Jobbagy &
Jackson, 2000, 2001). Thus, the increased proliferation of
roots at relatively unexplored depths under elevated [CO,]
(Fig. 2) may affect previously stable organic matter pools
deeper in the soil. The energy gained in deeper soils from
fresh inputs of labile C and N compounds from root exuda-
tion (de Graaff et al., 2007), or of detritus from root turn-
over (Iversen et al., 2008), may be more important than
temperature and moisture in stimulating the decomposition
of ancient C deeper in the soil profile (Fontaine ez al,

Soil depth (cm)
w
s

I I I
0.0 0.2 0.4 0.6 0.8 1.0

Cumulative root proportion

Fig. 2 Forest responses to elevated CO, concentration ([CO,]) may
result in rooting distributions that differ from current ecosystems.
Open symbols are data from the ambient [CO,] treatment, and
closed symbols are from the elevated [CO,] treatment, in the Oak
Ridge National Laboratory (ORNL) free-air CO, enrichment experi-
ment (FACE) in a sweetgum plantation (Iversen et al., 2008). Data
are proportional root production throughout the soil profile (to

60 cm deep) in 2001, which was the year of the largest increase in
root biomass production at depth under elevated [CO,] at ORNL
FACE. The lines are equal to 7 — B¢, where d is soil depth and B is the
fitted parameter (larger values imply deeper rooting depth; adapted
from Jackson et al., 1996). At ORNL FACE, B = 0.972 (dashed line,
R? = 0.93) under ambient [CO,], and p = 0.981 (solid line,

R? = 0.85) under elevated [CO,]. The shaded area represents the
global range in rooting depth distributions, ranging from p = 0.914
in the tundra to p = 0.976 in the temperate coniferous forest (Jack-
son et al., 1996).
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2007). For example, rhizosphere priming through exuda-
tion by living roots has been shown to stimulate the decom-
position of organic matter (Dijkstra & Cheng, 2007), and
also stimulate N mineralization (de Graaff ez 2/, 2009). As
up to 50% of soil C is stored below 20 cm in forests (Job-
bagy & Jackson, 2000), even small changes in C inputs at
depth in the soil can have drastic consequences for long-
term soil C storage (Fig. 1). However, root exudation is
notoriously difficult to measure, especially iz situ in the soil,
and measurements are often restricted to shallower soil lay-
ers (Phillips ez al, 2008). Further, more integration is
needed to link root C and N inputs with the cycling of
organic matter at depth in the soil, where declining oxygen
and temperature may be expected to halve microbial activity
(Gill & Burke, 2002).

In contrast to the stimulatory effect of fine-root inputs on
the decomposition of organic matter at depth in the soil,
root-derived inputs have been shown to be disproportion-
ately important for the formation of stable microaggregates
in the soil system (Gale er /., 2000). As the process of mic-
roaggregate formation depends not only on the organic
nucleus of root detritus, but also on soil texture, bulk den-
sity, and microbial activity (Six ez 4/, 2002), the rate of for-
mation could be expected to differ throughout the soil
profile, though this has not been examined in detail.

Tools and measurements

Novel analyses may be required to determine the conse-
quences of increased root proliferation at deeper soil
depths under elevated [CO,] for ecosystem C and N
cycling. For example, while minirhizotron measurements
are currently the best way to track the dynamics of ephem-
eral root populations (Johnson ez al, 2001), improved
methods of extrapolating measurements of root length and
diameter obtained from digitized images to root mass and
N content (Iversen ez al, 2008) and root respiration
(Makita er al., 2009) will be key in tracking root-derived
C and N cycling at depth in the soil. Other recent tools
are also available to track C fluxes throughout the soil that
may be attributable to fine roots. For example, the effect
of deeper rooting distributions on gradients of soil [CO,]
can be determined with CO, sensors that are coupled with
minirhizotron tubes (e.g. Vargas & Allen, 2008). Also, the
flux of '>C-CO, from the soil surface in experiments
where root material is labeled with a depleted '°C signal
can be measured on diurnal scales with tunable diode
lasers (e.g. Bahn er al, 2009). Novel analyses of com-
pound-specific isotopes (Filley er al., 2001) and tissue-spe-
cific biopolymers (Filley ez al., 2008) may also aid in the
identification of root-derived compounds. Along with C
fluxes, new strategies are needed to link measurements of
soil N availability with root dynamics throughout the soil
profile (as reviewed in Frank & Groffman, 2009), as cur-
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rent metrics to examine soil nutrient cycling often exclude
the effects of roots.

Incorporating rooting depth in projected forest
responses to rising CO,

An important goal of climate change research is the integra-
tion of experimental data with ecosystem models (Classen
& Langley, 2005). The plant—soil interface is one of the
largest areas of uncertainty in current global models, both
because of the difficulty in representing complex below-
ground processes, and also because of the scarcity of data
that will allow the development and parameterization of
improved model frameworks (Ostle ez /., 2009). While the
effects of rooting depth distribution on the distribution of
C and nutrients in the soil indicate that the interface
between fine roots and soil nutrient cycling should be con-
sidered throughout the soil profile (Jackson et al., 2000),
the most commonly used belowground ecosystem models
simulate the mineralization of organic matter at relatively
shallow soil depths (i.e. ¢. 20 cm; Parton ez al., 1988).

There are at least a dozen ecosystem or land surface mod-
els that are used to project C and nutrient cycling in forest
ecosystems (Hanson et al., 2004). The output from these
models is an important intermediate step between data
obtained from field experiments and the information
needed for global models used by the Intergovernmental
Panel on Climate Change Report to project future climatic
conditions (Denman et ., 2007). However, these models
differ in the way in which they represent root distributions
and nutrient cycling in the soil profile (Fig. 3). Some mod-
els do not have a framework to explicitly consider interac-
tions between fine-root production and soil nutrient cycling
(cf. Jackson et al., 2000), and therefore greater root prolifer-
ation throughout the soil would not affect nutrient uptake
rates by the forest system. While other models contain soil
layers that represent different depth increments, and pre-
scribe fractional root allocation among soil layers, these lay-
ers (represented by dashed lines in Fig. 3) are typically
included to represent water dynamics rather than nutrient
dynamics (e.g. Thornton ez al, 2007). Decomposition
dynamics, and therefore soil C and N mineralization, are
modeled as one ‘box’ (heavy outline in Fig. 3), and are typi-
cally parameterized with data measured at relatively shallow
soil depths (Parton ez al., 1988).

A disconnect between observed root dynamics and mod-
eled nutrient availability has confounded projections of for-
est responses to elevated [CO,]. While models predict that
soil N availability will limit forest responses to elevated
[CO,] (Thornton et 4l., 2007), many of the forested FACE
experiments found a sustained increase in N uptake from
the soil in response to CO; enrichment (Finzi ez al., 2007).
There has been much speculation on the source of this
‘extra’ N (Johnson, 20006), and a greater cumulative amount
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(a) G'DAY

T

(b)LPJ (c)CLM-CN

2.07m

Fig. 3 A small subsample of ecosystem and land surface models,
where forest vegetation pools are represented by schematic dia-
grams. The diagrams are separated into canopy, stem, roots, and soil
system. Aboveground, a canopy with multiple boxes indicates sun/
shade dynamics, while smaller boxes below the canopy indicate mul-
tiple species. Belowground, dotted lines indicate soil layers. Thus far,
the soil layers are used solely to model water distribution and tran-
spiration dynamics; soil C and N dynamics are modeled as one
‘depth’ (dark outline) in all three models. Total soil depth is indicated
on the left of each diagram. Three models are shown, representing a
range in model treatment of rooting distributions: (a) G'DAY (Pep-
per et al., 2007) does not explicitly consider the interaction between
fine roots and soil, (b) LPJ (Sitch et al., 2003) allocates proportional
root distribution in two soil layers, where the fraction in each layer
depends on the plant functional type, and (c) CLM-CN (Thornton

et al., 2007) prescribes a linear decline in root distribution with soil
depth, where the soil system is divided into 10 layers which are
exponentially larger as soil depth increases. Model diagrams are
based on the framework used in Hanson et al. (2004).

of N available at depth in the soil may be the answer (i.e. a
‘bigger box’ of N when deeper soil depths are considered).
However, shallower soil depths have been the main focus of
N cycling research in forested FACE experiments to date
(i.e. Zak et al.,, 2003).

A modeling framework that integrates root dynamics and
soil N availability at depth may help to pinpoint the cause
of increased root proliferation at depth in response to rising
[CO,] (i.e. shifting nutrient or water limitations) and
explain the dynamic nature of the rooting depth response
observed in a number of ecosystems. A framework for
examining the interaction among rooting responses and soil
C and N cycling at different soil depths currently exists in
at least some ecosystem or land surface models (i.e. dashed
lines in Fig. 3). However, more data are needed to accu-
rately parameterize root and nutrient dynamics at depth in
the soil. Data-model synthesis will be further improved by
communication among researchers as to the relevant depth
increments for observation of root and nutrient dynamics

(Table 1).

Conclusions

Increased root proliferation at depth may be a key response
of forested ecosystems to rising atmospheric [CO,]. How-
ever, it is uncertain to what extent this is a common phe-
nomenon (Table 1). While I have focused on the responses
of woody ecosystems to rising atmospheric [CO,], rooting
depth distributions in other ecosystems, such as grasslands
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and crops, also exert important controls over C and N stor-
age in the soil. Contrasting rooting depth distributions of
forested compared with cropped and grassland ecosystems
under elevated [CO,] merit further study, and could help
to elucidate the proximal controls over altered rooting dis-
tributions in a CO,-enriched atmosphere.

Deeper rooting distributions under elevated [CO,], and
the interaction of those roots with a soil environment
depleted in oxygen and microbial activity, could lead to
changes in root form and function, as well as changes in the
rate at which root detritus is incorporated into soil organic
matter. Altered rooting distributions also provide exciting
opportunities for research on C and N cycling in the soil.
Advances in the measurement of processes occurring at the
root—soil interface that take advantage of novel methodolo-
gies such as sensors embedded throughout the soil profile,
isotopic partitioning of C fluxes, compound specific chem-
istry, and measurements of nutrient cycling at depth will
provide data needed to inform ecosystem models.

It is important to accurately represent and parameterize
processes occurring throughout the soil profile in models.
The interactions among elevated [CO,] and global change
factors such as rising temperatures and altered precipitation
regimes will almost certainly affect the responses described
here, albeit in uncertain ways. Furthermore, the reconfigu-
ration of current model frameworks to accept data on root-
ing distributions and nutrient cycling at depth in the soil
will facilitate the testing of new hypotheses such as those
conceptualized in Fig. 1. Continued progress in under-
standing the interface between root growth and turnover
and soil C and N cycling, especially at depth in the soil, will
provide critical information needed for understanding cur-
rent ecosystem function, as well as predicting future ecosys-
tem responses to environmental change.
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