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Summary

Experimental evidence from a diverse set of forested ecosystems indicates that

CO2 enrichment may lead to deeper rooting distributions. While the causes of

greater root production at deeper soil depths under elevated CO2 concentration

([CO2]) require further investigation, altered rooting distributions are expected to

affect important ecosystem processes. The depth at which fine roots are produced

may influence root chemistry, physiological function, and mycorrhizal infection,

leading to altered nitrogen (N) uptake rates and slower turnover. Also, soil pro-

cesses such as microbial decomposition are slowed at depth in the soil, potentially

affecting the rate at which root detritus becomes incorporated into soil organic

matter. Deeper rooting distributions under elevated [CO2] provide exciting oppor-

tunities to use novel sensors and chemical analyses throughout the soil profile to

track the effects of root proliferation on carbon (C) and N cycling. Models do not

currently incorporate information on root turnover and C and N cycling at depth in

the soil, and modification is necessary to accurately represent processes associated

with altered rooting depth distributions. Progress in understanding and modeling

the interface between deeper rooting distributions under elevated [CO2] and soil C

and N cycling will be critical in projecting the sustainability of forest responses to

rising atmospheric [CO2].

Introduction

Belowground processes are increasingly recognized as an
important foundation for ecosystem responses to rising
atmospheric CO2 concentration ([CO2]). Fine roots (i.e.
roots < 2 mm in diameter) are important in water and
nutrient uptake, and are the main interface between trees
and the soil ecosystem. Because of their intimate association
with the soil profile, fine-root inputs are often more impor-
tant than leaf litter in driving soil organic matter accumula-
tion (Russell et al., 2004). Rising atmospheric [CO2] is

expected to increase carbon (C) and nitrogen (N) allocation
to fine roots, especially in N-limited forests (Norby & Jack-
son, 2000). Increased fine-root allocation could drive
changes in soil C storage and N cycling because fine roots
turn over quickly in forests (Gill & Jackson, 2000), and
contribute a large amount of C and N to the soil system
(Iversen et al., 2008).

Experimental evidence from a diverse set of forested eco-
systems indicates that fine roots of trees exposed to elevated
[CO2] are distributed more deeply in the soil profile relative
to trees grown under ambient [CO2] (Table 1). A multitude

New
PhytologistReview

346 New Phytologist (2010) 186: 346–357

www.newphytologist.com
No claim to original US government works

Journal compilation � New Phytologist Trust (2009)



T
ab

le
1

Fi
n
e-

ro
o
t

(i
.e

.
ro

o
ts

<
2

m
m

d
ia

m
et

er
)

d
ep

th
d
is

tr
ib

u
ti
o
n
s

in
C

O
2
-e

n
ri
ch

ed
w

o
o
d
y

ec
o
sy

st
em

s

Ex
p
er

im
en

ta
l

m
an

ip
u
la

ti
o
n

an
d

si
te

lo
ca

ti
o
n

Sp
ec

ie
s

ex
am

in
ed

T
ar

g
et

[C
O

2
]

(p
p
m

)
Y

ea
r

in
it
ia

te
d

R
o
o
t

m
ea

su
re

m
en

t
m

et
h
o
d
o
lo

g
y

So
il

d
ep

th
(c

m
)

Fi
n
e-

ro
o
t

d
ep

th
d
is

tr
ib

u
ti
o
n

u
n
d
er

el
ev

at
ed

[C
O

2
]

P
ro

p
o
rt

io
n

ro
o
t

b
io

m
as

s
d
ee

p
er

th
an

c.
1
5

cm

T
re

at
m

en
t

ye
ar

A
m

b
ie

n
t

[C
O

2
]

El
ev

at
ed

[C
O

2
]

F
re

e
-a

ir
C

O
2

e
n
ri

ch
m

e
n
t

D
u
ke

Fo
re

st
,

O
ra

n
g
e

C
o
u
n
ty

,

N
C

,
U

SA

P
in

u
s

ta
e
d
a

L.
A

m
b
ie

n
t

+

2
0
0

1
9
9
7

M
in

ir
h
iz

o
tr

o
n
s

an
d

so
il

co
re

s

3
0

N
o
t

re
p
o
rt

ed

M
at

am
al

a
&

Sc
h
le

si
n
g
er

(2
0
0
0
)

–
–

–

D
ee

p
er

P
ri
tc

h
ar

d
e
t

a
l.

(2
0
0
8
a)

7
0
.2

5
0
.3

9

P
ri
tc

h
ar

d
e
t

a
l.

(2
0
0
8
b
)1

8
0
.5

1
0
.9

2

R
h
in

el
an

d
er

,
W

I,

U
SA

P
o
p
u
lu

s
tr

e
m

u
lo

id
e
s

M
ic

h
x.

,
B

e
tu

la

p
a
p
y
ri

fe
ra

M
ar

sh
.,

A
ce

r

sa
cc

h
a
ru

m
M

ar
sh

.

5
6
0

1
9
9
7

M
in

ir
h
iz

o
tr

o
n
s

an
d

so
il

co
re

s

1
0
-2

5
N

o
t

re
p
o
rt

ed

K
in

g
e
t

a
l.

(2
0
0
1
)

–
–

–

K
in

g
e
t

a
l.

(2
0
0
5
)

–
–

–

P
re

g
it
ze

r
e
t

a
l.

(2
0
0
8
)

–
–

–

O
ak

R
id

g
e

N
at

io
n
al

La
b
o
ra

to
ry

,
T
N

,

U
SA

L
iq

u
id

a
m

b
a
r

st
y
ra

ci
fl
u
a

L.
5
6
5

1
9
9
8

M
in

ir
h
iz

o
tr

o
n
s

an
d

so
il

co
re

s

6
0

D
ee

p
er

Iv
er

se
n

e
t

a
l.

(2
0
0
8
)

1
0
.4

3
0
.6

6

V
it
er

b
o
,
It

al
y

P
o
p
u
lu

s
a
lb

a
L.

,

P
o
p
u
lu

s
n
ig

ra
L.

,

P
o
p
u
lu

s
·

e
u
ra

m
e
ri

ca
n
a

D
o
d
e

(G
u
in

ie
r)

5
5
0

1
9
9
9

So
il

co
re

s
4
0

D
ee

p
er

Lu
ka

c
e
t

a
l.

(2
0
0
3
)

3
0
.2

4
0
.3

8

Li
b
er

lo
o

e
t

a
l.

(2
0
0
6
)2

6
0
.2

4
0
.2

7

N
o

re
sp

o
n
se

Li
b
er

lo
o

e
t

a
l.

(2
0
0
9
)

–
–

–

St
ill

b
er

g
,
D

av
o
s,

Sw
it
ze

rl
an

d

L
a
ri

x
d
e
ci

d
u
a
s

M
ill

.,

P
in

u
s

u
n
ci

n
a
ta

M
ill

.
ex

M
ir
b
.

5
5
0

2
0
0
1

In
-g

ro
w

th
co

re
s

1
0

N
o
t

re
p
o
rt

ed

H
an

d
a

e
t

a
l.

(2
0
0
8
)

–
–

–

B
as

el
,
Sw

it
ze

rl
an

d
F
a
g
u
s

sy
lv

a
ti

ca
L.

,

Q
u
e
rc

u
s

p
e
tr

a
e
a

(M
at

t.
)

Li
eb

l.,
C

a
rp

in
u
s

b
e
tu

lu
s

L.
,
T
il

ia
p
la

ty
p
h
y
ll

o
s

Sc
o
p
.,

A
ce

r
ca

m
p
e
st

re

L.
,
P
ru

n
u
s

a
v
iu

m
L.

5
4
0

2
0
0
1

So
il

co
re

s
1
0

N
o
t

re
p
o
rt

ed

K
ee

le
t

a
l.

(2
0
0
6
)

–
–

–

O
p
e
n
-t

o
p

ch
a
m

b
e
r

U
S

Fo
re

st
Se

rv
ic

e

In
st

it
u
te

o
f

Fo
re

st
G

en
et

ic
s,

P
la

ce
rv

ill
e,

C
A

,

U
SA

P
in

u
s

p
o
n
d
e
ro

sa
D

o
u
g
l.

Ex
La

w
s.

5
2
5
,
7
0
0

1
9
9
1

M
in

ir
h
iz

o
tr

o
n
s

4
6

N
o

re
sp

o
n
se

T
in

g
ey

e
t

a
l.

(2
0
0
5
)

–
N

R
N

R

New
Phytologist Minireview Review 347

No claim to original US government works

Journal compilation � New Phytologist Trust (2009)

New Phytologist (2010) 186: 346–357

www.newphytologist.com



T
ab

le
1

(C
o
n
ti
n
u
ed

)

Ex
p
er

im
en

ta
l

m
an

ip
u
la

ti
o
n

an
d

si
te

lo
ca

ti
o
n

Sp
ec

ie
s

ex
am

in
ed

T
ar

g
et

[C
O

2
]

(p
p
m

)
Y

ea
r

in
it
ia

te
d

R
o
o
t

m
ea

su
re

m
en

t
m

et
h
o
d
o
lo

g
y

So
il

d
ep

th
(c

m
)

Fi
n
e-

ro
o
t

d
ep

th
d
is

tr
ib

u
ti
o
n

u
n
d
er

el
ev

at
ed

[C
O

2
]

P
ro

p
o
rt

io
n

ro
o
t

b
io

m
as

s
d
ee

p
er

th
an

c.
1
5

cm

T
re

at
m

en
t

ye
ar

A
m

b
ie

n
t

[C
O

2
]

El
ev

at
ed

[C
O

2
]

M
er

ri
tt

Is
la

n
d
,

K
en

n
ed

y
Sp

ac
e

C
en

te
r,

FL
,
U

SA

Q
u
e
rc

u
s

sp
p
.

7
0
0

1
9
9
2

(P
ilo

t
st

u
d
y)

M
in

ir
h
iz

o
tr

o
n
s

6
1

D
ee

p
er

D
ay

e
t

a
l.

(2
0
0
6
)

2
0
.4

3
0
.4

6

H
ea

d
le

y,

H
am

p
sh

ir
e,

U
K

Q
u
e
rc

u
s

p
e
tr

a
e
a

L.
,

F
ra

x
in

u
s

e
x
ce

ls
io

r
L.

,

P
in

u
s

sy
lv

e
st

ri
s

L.

7
0
0

1
9
9
4

In
-g

ro
w

th
co

re
s

3
0

N
o
t

re
p
o
rt

ed

C
ro

o
ks

h
an

ks
e
t

a
l.

(1
9
9
8
)

–
–

–

O
ak

R
id

g
e

N
at

io
n
al

La
b
o
ra

to
ry

,
O

ak

R
id

g
e,

T
N

,
U

SA

A
ce

r
ru

b
ru

m
L.

,
A

ce
r

sa
cc

h
a
ru

m
M

ar
sh

.

A
m

b
ie

n
t

+
3
0
0

1
9
9
4

M
in

ir
h
iz

o
tr

o
n
s

an
d

so
il

co
re

s

6
0

N
o
t

re
p
o
rt

ed

W
an

e
t

a
l.

(2
0
0
4
)

–
–

–

U
n
iv

er
si

ty
o
f

M
ic

h
ig

an

B
io

lo
g
ic

al

St
at

io
n
,
P
el

ls
to

n
,

M
I,

U
SA

P
o
p
u
lu

s
tr

e
m

u
lo

id
e
s

M
ic

h
x.

7
0
0

1
9
9
4

M
in

ir
h
iz

o
tr

o
n
s

an
d

so
il

co
re

s

4
5

N
o
t

re
p
o
rt

ed

P
re

g
it
ze

r
e
t

a
l.

(2
0
0
0
)

–
–

–

B
ir
m

en
sd

o
rf

,

Sw
it
ze

rl
an

d

F
a
g
u
s

sy
lv

a
ti

ca
L.

,
P
ic

e
a

a
b
ie

s
K

ar
st

.

5
7
0

1
9
9
5

So
il

co
re

s
4
2

N
o
t

re
p
o
rt

ed

Sp
in

n
le

r
e
t

a
l.

(2
0
0
2
)

–
–

–

C
h
ri
st

ch
u
rc

h
,
N

ew

Z
ea

la
n
d

P
in

u
s

ra
d
ia

ta
D

.
D

o
n

6
5
0

1
9
9
5

M
in

ir
h
iz

o
tr

o
n
s

an
d

so
il

co
re

s

9
0

D
ee

p
er

T
h
o
m

as
e
t

a
l.

(1
9
9
9
)

2
0
.4

4
0
.5

0

Sw
is

s
Fe

d
er

al

R
es

ea
rc

h

In
st

it
u
te

fo
r

Fo
re

st
,
Sn

o
w

an
d

La
n
d
sc

ap
e

R
es

ea
rc

h
,

Sw
it
ze

rl
an

d

F
a
g
u
s

si
lv

a
ti

ca
L.

,
P
ic

e
a

a
b
ie

s
(L

.)
K

ar
st

.

A
m

b
ie

n
t

+
2
0
0

1
9
9
5

So
il

co
re

s
4
0

N
o

re
sp

o
n
se

W
ie

m
ke

n
e
t

a
l.

(2
0
0
1
)

4
0
.4

4
0
.4

0

M
er

ri
tt

Is
la

n
d
,

K
en

n
ed

y
Sp

ac
e

C
en

te
r,

FL
,
U

SA

Q
u
e
rc

u
s

sp
p
.

7
0
0

1
9
9
6

M
in

ir
h
iz

o
tr

o
n
s

an
d

so
il

co
re

s

1
0
1

D
ee

p
er

D
ay

e
t

a
l.

(2
0
0
6
)

2
0
.5

1
0
.5

8

N
o
t

re
p
o
rt

ed

B
ro

w
n

e
t

a
l.

(2
0
0
9
)

–
–

–

U
n
iv

er
si

ty
o
f

A
n
tw

er
p
,
W

ilr
ijk

,

B
el

g
iu

m

P
in

u
s

sy
lv

e
st

ri
s

L.
A

m
b
ie

n
t

+
4
0
0

1
9
9
6

So
il

co
re

s
5
0

N
o
t

re
p
o
rt

ed

Ja
ch

e
t

a
l.

(2
0
0
0
)

–
–

–

348 Review Minireview
New
Phytologist

No claim to original US government works

Journal compilation � New Phytologist Trust (2009)

New Phytologist (2010) 186: 346–357

www.newphytologist.com



T
ab

le
1

(C
o
n
ti
n
u
ed

)

Ex
p
er

im
en

ta
l

m
an

ip
u
la

ti
o
n

an
d

si
te

lo
ca

ti
o
n

Sp
ec

ie
s

ex
am

in
ed

T
ar

g
et

[C
O

2
]

(p
p
m

)
Y

ea
r

in
it
ia

te
d

R
o
o
t

m
ea

su
re

m
en

t
m

et
h
o
d
o
lo

g
y

So
il

d
ep

th
(c

m
)

Fi
n
e-

ro
o
t

d
ep

th
d
is

tr
ib

u
ti
o
n

u
n
d
er

el
ev

at
ed

[C
O

2
]

P
ro

p
o
rt

io
n

ro
o
t

b
io

m
as

s
d
ee

p
er

th
an

c.
1
5

cm

T
re

at
m

en
t

ye
ar

A
m

b
ie

n
t

[C
O

2
]

El
ev

at
ed

[C
O

2
]

U
SD

A
-A

R
S

N
at

io
n
al

So
il

D
yn

am
ic

s

La
b
o
ra

to
ry

,

A
u
b
u
rn

,
A

L,
U

SA

P
in

u
s

p
a
lu

st
ri

s
M

ill
.,

A
ri

st
id

a
st

ri
ct

a
M

ic
h
x.

,

Q
u
e
rc

u
s

m
a
rg

a
re

tt
a

A
sh

e,
C

ro
ta

la
ri

a

ro
tu

n
d
if

o
li

a
W

al
t.

,

A
e
sc

le
p
ia

s
tu

b
e
ro

sa
L.

7
2
0

1
9
9
8

M
in

ir
h
iz

o
tr

o
n
s

3
2
.5

D
ee

p
er

P
ri
tc

h
ar

d
e
t

a
l.

(2
0
0
1
)

1
0
.4

3
0
.5

6

C
lo

se
d

ch
a
m

b
e
r

U
S

EP
A

,
C

o
rv

al
lis

,

O
R

,
U

SA

P
se

u
d
o
ts

u
g
a

m
e
n
zi

e
si

i

(M
ir
b
.)

Fr
an

co

A
m

b
ie

n
t

+
2
0
0

1
9
9
4

M
in

ir
h
iz

o
tr

o
n
s

7
8

D
ee

p
er

Jo
h
n
so

n
e
t

a
l.

(2
0
0
6
)3

4
0
.2

0
0
.5

0

U
S

EP
A

,
C

o
rv

al
lis

,

O
R

,
U

SA

P
in

u
s

p
o
n
d
e
ro

sa
D

o
u
g
l.

Ex
La

w
s.

A
m

b
ie

n
t

+
2
7
0

1
9
9
8

M
in

ir
h
iz

o
tr

o
n
s

an
d

so
il

ex
ca

va
ti
o
n

9
3

N
o

re
sp

o
n
se

P
h
ill

ip
s

e
t

a
l.

(2
0
0
9
)

3
0
.8

9
0
.8

8

In
ad

d
it
io

n
to

th
e

st
u
d
ie

s
re

p
o
rt

ed
in

th
e

ta
b
le

,
th

er
e

w
er

e
al

so
se

ve
ra

lo
p
en

-t
o
p

ch
am

b
er

ex
p
er

im
en

ts
th

at
b
eg

an
in

o
r

b
ef

o
re

1
9
9
2

th
at

d
id

n
o
t

ex
am

in
e

ro
o
ti
n
g

d
ep

th
d
is

tr
ib

u
ti
o
n

(e
.g

.
M

u
rr

ay
e
t

a
l.

,

1
9
9
6
;
N

o
rb

y
e
t

a
l.

,
1
9
9
5
;
R

ey
&

Ja
rv

is
,
1
9
9
7
;
T
in

g
ey

e
t

a
l.

,
1
9
9
7
;
T
is

su
e

e
t

a
l.

,
1
9
9
7
).

In
so

m
e

ca
se

s,
m

u
lt
ip

le
m

an
u
sc

ri
p
ts

fr
o
m

th
e

sa
m

e
ex

p
er

im
en

t
w

er
e

in
cl

u
d
ed

w
h
en

th
ey

en
co

m
p
as

se
d

d
if
fe

re
n
t

tr
ea

tm
en

t
ye

ar
s.

W
ie

m
ke

n
e
t

a
l.

(2
0
0
1
),

Sp
in

n
le

r
e
t

a
l.

(2
0
0
2
),

Lu
ka

c
e
t

a
l.

(2
0
0
3
),

D
ay

e
t

a
l.

(2
0
0
6
),

Li
b
er

lo
o

e
t

a
l.

(2
0
0
6
),

Jo
h
n
so

n
e
t

a
l.

(2
0
0
6
),

an
d

P
h
ill

ip
s

e
t

a
l.

(2
0
0
9
)

re
p
o
rt

ed
th

e
d
ep

th

d
is

tr
ib

u
ti
o
n

o
f

ro
o
t

st
an

d
in

g
cr

o
p
,
n
o
t

p
ro

d
u
ct

io
n
.
R

aw
d
at

a
to

d
et

er
m

in
e

th
e

p
ro

p
o
rt

io
n

o
f

ro
o
t

b
io

m
as

s
d
is

tr
ib

u
te

d
d
ee

p
er

th
an

c.
1
5

cm
in

th
e

so
il

(a
ct

u
al

ly
d
ee

p
er

th
an

1
0
–2

5
cm

d
ep

en
d
in

g
o
n

th
e

d
ep

th
in

cr
em

en
t

m
ea

su
re

d
in

th
e

in
d
iv

id
u
al

st
u
d
y)

w
er

e
o
b
ta

in
ed

fr
o
m

ea
ch

m
an

u
sc

ri
p
t

fr
o
m

ta
b
le

s,
o
r

fr
o
m

fi
g
u
re

s
u
si

n
g

d
ig

it
al

ca
lip

er
s.

In
th

e
ca

se
o
f

Lu
ka

c
e
t

a
l.

(2
0
0
3
),

th
e

p
ro

p
o
rt

io
n
al

re
sp

o
n
se

s
o
f

P
o
p
u
lu

s
a
lb

a
an

d
P
o
p
u
lu

s
n
ig

ra
,
th

e
sp

ec
ie

s
in

w
h
ic

h
th

e
d
ep

th
d
is

tr
ib

u
ti
o
n

w
as

si
g
n
ifi

ca
n
tl
y

d
if
fe

re
n
t

u
n
d
er

el
ev

at
ed

[C
O

2
],

w
er

e
av

er
ag

ed
.
In

th
e

ca
se

o
f

Li
b
er

lo
o

e
t

a
l.

(2
0
0
6
),

th
e

p
ro

p
o
rt

io
n

o
f

co
ar

se

ro
o
ts

d
ee

p
er

in
th

e
so

il
w

as
av

er
ag

ed
o
ve

r
al

lt
h
re

e
P
o
p
u
lu

s
sp

ec
ie

s.
In

th
e

ca
se

o
f

W
ie

m
ke

n
e
t

a
l.

(2
0
0
1
),

p
ro

p
o
rt

io
n
al

re
sp

o
n
se

s
w

er
e

av
er

ag
ed

o
ve

r
ca

lc
ar

eo
u
s

an
d

si
lic

eo
u
s

so
il

ty
p
es

.
In

al
lc

as
es

,
I

ch
o
se

th
e

tr
ea

tm
en

t
ye

ar
in

w
h
ic

h
th

e
la

rg
es

t
d
if
fe

re
n
ce

s
in

p
ro

p
o
rt

io
n
al

d
ep

th
d
is

tr
ib

u
ti
o
n

b
et

w
ee

n
am

b
ie

n
t

an
d

el
ev

at
ed

[C
O

2
]

w
er

e
re

p
o
rt

ed
.
W

h
ile

p
o
te

n
ti
al

ly
u
se

fu
la

s
a

ro
u
g
h

co
m

p
ar

is
o
n

am
o
n
g

st
u
d
ie

s,
p
ro

p
o
rt

io
n
al

ro
o
t

d
is

tr
ib

u
ti
o
n

in
th

e
so

il
p
ro

fi
le

b
el

o
w

1
5

cm
sh

o
u
ld

b
e

in
te

rp
re

te
d

w
it
h

ca
u
ti
o
n
,
g
iv

en
th

at
th

is
w

ill
d
if
fe

r
d
ep

en
d
in

g
o
n

th
e

ab
so

lu
te

d
ep

th
o
f

m
ea

su
re

m
en

ts
(i
.e

.
3
0

cm
co

m
p
ar

ed

w
it
h

1
0
0

cm
),

d
o
es

n
o
t

n
ec

es
sa

ri
ly

co
rr

es
p
o
n
d

to
th

e
ye

ar
in

w
h
ic

h
ab

so
lu

te
ro

o
t

p
ro

d
u
ct

io
n

at
d
ep

th
in

th
e

so
il

w
as

g
re

at
es

t
(i
.e

.
Iv

er
se

n
e
t

a
l.

,
2
0
0
8
;
P
ri
tc

h
ar

d
e
t

a
l.

,
2
0
0
8
a)

,
an

d
n
eg

le
ct

s
ro

o
ti
n
g

re
sp

o
n
se

s
lo

ca
liz

ed
to

sp
ec

ifi
c

so
il

d
ep

th
s

(i
.e

.
D

ay
e
t

a
l.

,
2
0
0
6
;
Iv

er
se

n
e
t

a
l.

,
2
0
0
8
;
Jo

h
n
so

n
e
t

a
l.

,
2
0
0
6
).

1
D

ee
p
er

d
is

tr
ib

u
ti
o
n

o
f

m
yc

o
rr

h
iz

al
p
ro

d
u
ct

io
n
.

2
D

ee
p
er

d
is

tr
ib

u
ti
o
n

o
f

co
ar

se
ro

o
ts

u
n
d
er

el
ev

at
ed

[C
O

2
].

3
D

ee
p
er

ro
o
t

d
is

tr
ib

u
ti
o
n

w
it
h

n
o

o
ve

ra
ll

ef
fe

ct
o
f

el
ev

at
ed

[C
O

2
]

o
n

ro
o
t

p
ro

d
u
ct

io
n
.

N
R

,
d
ep

th
d
is

tr
ib

u
ti
o
n

n
o
t

re
p
o
rt

ed
.

New
Phytologist Minireview Review 349

No claim to original US government works

Journal compilation � New Phytologist Trust (2009)

New Phytologist (2010) 186: 346–357

www.newphytologist.com



of important soil properties change with soil depth; for
example, oxygen content, soil moisture, bulk density, tem-
perature and soil texture (Schenk, 2005). Thus, as soil depth
increases, microbial activity, nutrient availability, and root
decomposition rates often decline (Gill & Burke, 2002).
While rooting depth distribution under elevated [CO2] was
described as a major unknown 15 yr ago (Rogers et al.,
1994), the consequences of increased fine-root proliferation
and turnover at depth are still poorly understood; this is in
part because belowground research is often truncated at rela-
tively shallow soil depths (c. 20 cm). The objective of this
review is to examine the potential mechanisms for, and con-
sequences of, deeper rooting distributions under elevated
[CO2] as they relate to ecosystem C and N cycling. The
main focus is on forest ecosystems exposed to elevated
[CO2] in relatively intact soil systems (i.e. free-air CO2

enrichment experiments and open-top chambers).

Evidence for deeper rooting distributions under
elevated [CO2]

Deeper rooting distributions under elevated [CO2] have
been observed in a variety of experiments and ecosystems,
ranging from free-air CO2 enrichment (FACE) experiments
in mature forest plantations to tree seedlings and saplings
planted in open-top chambers (Table 1). Fine roots devel-
oped under elevated [CO2] are not necessarily found deeper
in the soil than fine roots developed under ambient [CO2].
Rather, the relative increase in root production under ele-
vated [CO2] is often greatest below c. 15 cm depth, result-
ing in a larger proportion of root biomass at deeper soil
depths under elevated [CO2] (Table 1). For example, in a
FACE experiment in a sweetgum (Liquidambar styraciflua
L.) plantation, Iversen et al. (2008) found that, over 9 yr,
there was a 220% stimulation in cumulative C inputs from
fine roots under elevated [CO2] at 45–60 cm soil depth,
compared with a 30% stimulation of root C inputs at
0–15 cm depth. At least half of root-derived C and N
inputs in this sweetgum plantation were deeper than 30 cm
under elevated [CO2]. Pritchard et al. (2008a) found a
similar response in a CO2-enriched loblolly pine (Pinus
taeda L.) plantation, where elevated [CO2] resulted in a
larger stimulation of root production at 15–30 cm depth
compared with 0–15 cm depth. Deeper rooting distri-
butions under elevated [CO2] have also been observed in
seedlings in pot studies (1.6-m-deep pots; Derner et al.,
2005). Of those experiments that examined rooting depth
responses to elevated [CO2], 73% found deeper rooting
distributions (Table 1).

While rooting depth is functionally determined by spe-
cies and ecosystem type (Jackson et al., 1996), observations
of rooting responses at depth in the soil are limited by the
effort applied and the technology used. For example, the
minirhizotrons used by Pritchard et al. (2008a) reached to

only c. 30 cm, and the authors indicated that deeper tubes
were recently installed to determine whether rooting
responses deeper than 30 cm exist. Iversen et al. (2008) and
Pritchard et al. (2008a) both used minirhizotron technol-
ogy to determine root dynamics in mature forest planta-
tions, but investigations of root dynamics in other
experiments have used methodology ranging from soil cor-
ing to in-growth cores (Table 1).

Deeper root distribution under elevated [CO2] appears to
be a relatively dynamic response. Root proliferation at depth
did not occur in all experiments exposed to elevated [CO2]
(Table 1), and when it did occur, it was both dynamic (i.e.
occurring in some treatment years and not others; e.g. Day
et al., 2006; Iversen et al., 2008; Liberloo et al., 2009) and
species-specific (e.g. occurring in two poplar clones, but not
a third, in Lukac et al., 2003). Deeper rooting distributions
have also been observed under elevated [CO2] without an
overall increase in root production (i.e. a redistribution of
roots belowground; cf. Johnson et al., 2006). Increased
proliferation at depth in the soil has not been limited to fine
roots; increased production of mycorrhizas (Pritchard et al.,
2008b) and coarse roots (Liberloo et al., 2006) also
occurred deeper in the soil under CO2 enrichment.

A historical focus on roots in shallower soils (i.e. the
‘plow layer’) contributes to the fact that rooting depth
responses remain unexamined or unreported in many CO2-
enrichment studies (Table 1). For example, it was assumed
at the start of the sweetgum FACE experiment that the
roots had fully occupied the soil volume in the closed-can-
opy stand (Norby et al., 2004); the subsequent capture of
the rooting depth response was largely fortuitous and a
consequence in large part of the depth at which the minirhi-
zotron tubes were installed.

Potential causes of deeper rooting distributions
under elevated [CO2]

While much work has been done to examine root prolifera-
tion in the soil in response to resource patches (reviewed in
Hodge, 2004), the causes of increased root proliferation
throughout the soil under elevated [CO2] remain relatively
unexplored (Pritchard et al., 1999). A conceptual diagram
(Fig. 1) may serve as a framework for future hypothesis
testing to determine the potential mechanisms for, and
feedbacks from, greater root production at depth in a CO2-
enriched atmosphere. Deeper rooting distributions under
elevated [CO2] are probably related to three factors:
increased resource demand as forest production increases in
response to CO2 enrichment; increased C available for allo-
cation to root growth; and limited resource availability in
shallower soil as a result of increased microbial or plant
competition. These three factors will probably interact to
control root ‘decisions’ (i.e. Hodge, 2009) that determine
root distribution throughout the soil profile.
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Increased C allocation to fine roots under elevated [CO2]
is mainly observed in nutrient-limited forest ecosystems
(Table 1). Further, CO2 enrichment has increased plant
demand for nutrient acquisition in a number of forests
(Finzi et al., 2007). Roots often proliferate throughout the
soil in response to patches of nutrient availability (Prior
et al., 2003; Hodge, 2004), and it stands to reason that
mining for nutrients is one of the main reasons for greater
root proliferation in deeper soil under elevated [CO2]
(Fig. 1a). Others have shown that nutrients are available for
plant uptake at depth in the soil (Jobbágy & Jackson, 2001;
McKinley et al., 2009), and that the proliferation of new
roots can stimulate the mineralization of older organic mat-
ter (i.e. priming; Dijkstra & Cheng, 2007). However, there
is still much uncertainty regarding the cues for root prolifer-
ation throughout the soil, as well as the benefits from such
proliferation (Hodge, 2004), and little work has been done
to examine root proliferation at depth in the soil in response
to nutrients. Roots also proliferate in water zones (Hodge,
2004), and greater root production at depth may also occur
in response to increased tree water use under elevated
[CO2] (Uddling et al., 2008). However, water limitations
may be rarer under elevated [CO2] if decreased stomatal
conductance at the leaf level (Medlyn et al., 2001) results in
less transpiration at the canopy level.

Terrestrial ecosystems are often limited by multiple
factors, including light and nutrient availability (Fahey
et al., 1998). In nutrient-limited forest ecosystems, greater
C fixation in response to rising atmospheric [CO2] may
help to alleviate previous constraints on root development
and resource acquisition (Pritchard et al., 1999; Stitt &
Krapp, 1999). Cost–benefit models have been used to
explain root construction and maintenance (Eissenstat
et al., 2000), and C gains under elevated [CO2] may shift
the cost–benefit balance in favor of root production
(Fig. 1b), especially in deeper soil where the benefit of
smaller resource gains may have previously been out-
weighed by C costs. The benefit of root proliferation at
depth may be further enhanced by strong competition from
microbes, and intra- and interspecific interactions with
other plant roots, for limited resources in shallower soil
(Fig. 1c), especially as increased litter inputs under elevated
[CO2] are expected to increase microbial immobilization of
available nutrients (Zak et al., 2000).

Plant root systems are controlled by complex interactions
between genetic constraints and environmental conditions
(Nibau et al., 2008). Thus, differences in the rooting depth
distributions observed under elevated [CO2] across a range
of experiments (Table 1) are probably determined by the
interplay between genetically determined species character-
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Fig. 1 A conceptual model of the processes
leading to deeper rooting distributions under
elevated CO2 concentration ([CO2]) (solid
lines), and potential feedbacks from the pro-
duction of deeper roots (dashed lines).
Deeper rooting distributions in CO2-enriched
forests are probably a result of three interact-
ing factors: (a) increased resource demand by
trees, (b) greater carbon (C) available for
allocation belowground, and (c) increased
competition for scarce resources in shallower
soil from microbes or other roots. I have spe-
cifically chosen to use the phrase ‘resources’
in the conceptual model rather than ‘nutri-
ents’ to indicate that essential plant resources
other than nutrients (e.g. water) may also
control rooting distributions under elevated
[CO2].
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istics such as plant physiology, biochemistry, and root archi-
tecture (Bradley & Pregitzer, 2007; Nibau et al., 2008),
and ecosystem properties such as climate and soil texture
(Jobbágy & Jackson, 2000), resource heterogeneity (Prior
et al., 2003), and water table depth (Imada et al., 2008).
For example, this review focuses on forested ecosystems,
but, in contrast to forests, crop and grassland ecosystems
tend to have shallower rooting distributions under elevated
[CO2] (as reviewed in Arnone et al., 2000; Pritchard &
Rogers, 2000). Elevated [CO2] has been shown to stimulate
the development of lateral roots (Crookshanks et al., 1998;
Pritchard et al., 1999). Therefore, root proliferation in shal-
lower soils may be the result of shallower rooting distribu-
tions in crop and grassland ecosystems compared with those
in forested ecosystems (Jackson et al., 1996), or shallower
rooting distributions in annual compared with perennial
plants (Holmes & Rice, 1996). Greater access to nutrients
or water at shallower soil depths in crop or grassland ecosys-
tems (Prior et al., 2003; Nippert & Knapp, 2007) may also
help to explain the contrasting response.

Potential consequences of deeper rooting
distributions under elevated [CO2]

While pinpointing the mechanisms of deeper rooting
distributions under elevated [CO2] requires more experi-
mentation, the potential consequences of increased root
production at depth can be inferred from current know-
ledge regarding changing ecosystem processes with soil
depth.

Root form and function

The depth at which fine roots are produced may influence
intrinsic root properties (Fig. 1). For example, roots pro-
duced in deeper soils tend to have a lower risk of mortality
(Wells et al., 2002; Guo et al., 2008). Roots in deeper soil
also often have increased diameter (Wells et al., 2002),
lower average root N concentration (Pregitzer et al., 1998),
and decreased root respiration rates (Pregitzer et al., 1998).
Changes in root form and function at depth in the soil may
interact with reduced root [N] and maintenance respiration
expected to occur under elevated [CO2] (i.e. Eissenstat
et al., 2000). Altered root chemistry and physiology may in
turn result in altered N uptake rates (Göransson et al.,
2008), slowed rates of C and N input to the soil as a result
of increased root longevity (Joslin et al., 2006), and reduced
decomposability (Cotrufo & Ineson, 1995).

Deeper rooting distributions under elevated [CO2] may
also affect root infection by symbionts (Fig. 1). Mycorrhizal
fungi, which receive a significant portion of the C taken up
by the host plant in exchange for nutrient uptake, are
important players in ecosystem C and nutrient cycling. Fur-
ther, mycorrhizal abundance has been shown to increase up

to 50% in response to elevated [CO2] (Treseder, 2004).
Mycorrhizal colonization is closely related to root distribu-
tion in the soil across multiple biomes, and, while infection
rates tend to decline with soil depth in natural ecosystems
(Treseder & Cross, 2006), there is evidence that both ecto-
mycorrhizas and arbuscular mycorrhizas increase root infec-
tion rates deeper in the soil profile in response to elevated
[CO2] (Rillig & Field, 2003; Pritchard et al., 2008b).

Root inputs and soil organic matter cycling

The vertical distribution of organic matter and nutrients in
the soil is strongly related to rooting patterns (Jobbágy &
Jackson, 2000, 2001). Thus, the increased proliferation of
roots at relatively unexplored depths under elevated [CO2]
(Fig. 2) may affect previously stable organic matter pools
deeper in the soil. The energy gained in deeper soils from
fresh inputs of labile C and N compounds from root exuda-
tion (de Graaff et al., 2007), or of detritus from root turn-
over (Iversen et al., 2008), may be more important than
temperature and moisture in stimulating the decomposition
of ancient C deeper in the soil profile (Fontaine et al.,
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Fig. 2 Forest responses to elevated CO2 concentration ([CO2]) may
result in rooting distributions that differ from current ecosystems.
Open symbols are data from the ambient [CO2] treatment, and
closed symbols are from the elevated [CO2] treatment, in the Oak
Ridge National Laboratory (ORNL) free-air CO2 enrichment experi-
ment (FACE) in a sweetgum plantation (Iversen et al., 2008). Data
are proportional root production throughout the soil profile (to
60 cm deep) in 2001, which was the year of the largest increase in
root biomass production at depth under elevated [CO2] at ORNL
FACE. The lines are equal to 1 – bd, where d is soil depth and b is the
fitted parameter (larger values imply deeper rooting depth; adapted
from Jackson et al., 1996). At ORNL FACE, b = 0.972 (dashed line,
R2 = 0.93) under ambient [CO2], and b = 0.981 (solid line,
R2 = 0.85) under elevated [CO2]. The shaded area represents the
global range in rooting depth distributions, ranging from b = 0.914
in the tundra to b = 0.976 in the temperate coniferous forest (Jack-
son et al., 1996).

352 Review Minireview
New
Phytologist

No claim to original US government works

Journal compilation � New Phytologist Trust (2009)

New Phytologist (2010) 186: 346–357

www.newphytologist.com



2007). For example, rhizosphere priming through exuda-
tion by living roots has been shown to stimulate the decom-
position of organic matter (Dijkstra & Cheng, 2007), and
also stimulate N mineralization (de Graaff et al., 2009). As
up to 50% of soil C is stored below 20 cm in forests (Job-
bágy & Jackson, 2000), even small changes in C inputs at
depth in the soil can have drastic consequences for long-
term soil C storage (Fig. 1). However, root exudation is
notoriously difficult to measure, especially in situ in the soil,
and measurements are often restricted to shallower soil lay-
ers (Phillips et al., 2008). Further, more integration is
needed to link root C and N inputs with the cycling of
organic matter at depth in the soil, where declining oxygen
and temperature may be expected to halve microbial activity
(Gill & Burke, 2002).

In contrast to the stimulatory effect of fine-root inputs on
the decomposition of organic matter at depth in the soil,
root-derived inputs have been shown to be disproportion-
ately important for the formation of stable microaggregates
in the soil system (Gale et al., 2000). As the process of mic-
roaggregate formation depends not only on the organic
nucleus of root detritus, but also on soil texture, bulk den-
sity, and microbial activity (Six et al., 2002), the rate of for-
mation could be expected to differ throughout the soil
profile, though this has not been examined in detail.

Tools and measurements

Novel analyses may be required to determine the conse-
quences of increased root proliferation at deeper soil
depths under elevated [CO2] for ecosystem C and N
cycling. For example, while minirhizotron measurements
are currently the best way to track the dynamics of ephem-
eral root populations (Johnson et al., 2001), improved
methods of extrapolating measurements of root length and
diameter obtained from digitized images to root mass and
N content (Iversen et al., 2008) and root respiration
(Makita et al., 2009) will be key in tracking root-derived
C and N cycling at depth in the soil. Other recent tools
are also available to track C fluxes throughout the soil that
may be attributable to fine roots. For example, the effect
of deeper rooting distributions on gradients of soil [CO2]
can be determined with CO2 sensors that are coupled with
minirhizotron tubes (e.g. Vargas & Allen, 2008). Also, the
flux of 13C-CO2 from the soil surface in experiments
where root material is labeled with a depleted 13C signal
can be measured on diurnal scales with tunable diode
lasers (e.g. Bahn et al., 2009). Novel analyses of com-
pound-specific isotopes (Filley et al., 2001) and tissue-spe-
cific biopolymers (Filley et al., 2008) may also aid in the
identification of root-derived compounds. Along with C
fluxes, new strategies are needed to link measurements of
soil N availability with root dynamics throughout the soil
profile (as reviewed in Frank & Groffman, 2009), as cur-

rent metrics to examine soil nutrient cycling often exclude
the effects of roots.

Incorporating rooting depth in projected forest
responses to rising CO2

An important goal of climate change research is the integra-
tion of experimental data with ecosystem models (Classen
& Langley, 2005). The plant–soil interface is one of the
largest areas of uncertainty in current global models, both
because of the difficulty in representing complex below-
ground processes, and also because of the scarcity of data
that will allow the development and parameterization of
improved model frameworks (Ostle et al., 2009). While the
effects of rooting depth distribution on the distribution of
C and nutrients in the soil indicate that the interface
between fine roots and soil nutrient cycling should be con-
sidered throughout the soil profile (Jackson et al., 2000),
the most commonly used belowground ecosystem models
simulate the mineralization of organic matter at relatively
shallow soil depths (i.e. c. 20 cm; Parton et al., 1988).

There are at least a dozen ecosystem or land surface mod-
els that are used to project C and nutrient cycling in forest
ecosystems (Hanson et al., 2004). The output from these
models is an important intermediate step between data
obtained from field experiments and the information
needed for global models used by the Intergovernmental
Panel on Climate Change Report to project future climatic
conditions (Denman et al., 2007). However, these models
differ in the way in which they represent root distributions
and nutrient cycling in the soil profile (Fig. 3). Some mod-
els do not have a framework to explicitly consider interac-
tions between fine-root production and soil nutrient cycling
(cf. Jackson et al., 2000), and therefore greater root prolifer-
ation throughout the soil would not affect nutrient uptake
rates by the forest system. While other models contain soil
layers that represent different depth increments, and pre-
scribe fractional root allocation among soil layers, these lay-
ers (represented by dashed lines in Fig. 3) are typically
included to represent water dynamics rather than nutrient
dynamics (e.g. Thornton et al., 2007). Decomposition
dynamics, and therefore soil C and N mineralization, are
modeled as one ‘box’ (heavy outline in Fig. 3), and are typi-
cally parameterized with data measured at relatively shallow
soil depths (Parton et al., 1988).

A disconnect between observed root dynamics and mod-
eled nutrient availability has confounded projections of for-
est responses to elevated [CO2]. While models predict that
soil N availability will limit forest responses to elevated
[CO2] (Thornton et al., 2007), many of the forested FACE
experiments found a sustained increase in N uptake from
the soil in response to CO2 enrichment (Finzi et al., 2007).
There has been much speculation on the source of this
‘extra’ N (Johnson, 2006), and a greater cumulative amount
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of N available at depth in the soil may be the answer (i.e. a
‘bigger box’ of N when deeper soil depths are considered).
However, shallower soil depths have been the main focus of
N cycling research in forested FACE experiments to date
(i.e. Zak et al., 2003).

A modeling framework that integrates root dynamics and
soil N availability at depth may help to pinpoint the cause
of increased root proliferation at depth in response to rising
[CO2] (i.e. shifting nutrient or water limitations) and
explain the dynamic nature of the rooting depth response
observed in a number of ecosystems. A framework for
examining the interaction among rooting responses and soil
C and N cycling at different soil depths currently exists in
at least some ecosystem or land surface models (i.e. dashed
lines in Fig. 3). However, more data are needed to accu-
rately parameterize root and nutrient dynamics at depth in
the soil. Data-model synthesis will be further improved by
communication among researchers as to the relevant depth
increments for observation of root and nutrient dynamics
(Table 1).

Conclusions

Increased root proliferation at depth may be a key response
of forested ecosystems to rising atmospheric [CO2]. How-
ever, it is uncertain to what extent this is a common phe-
nomenon (Table 1). While I have focused on the responses
of woody ecosystems to rising atmospheric [CO2], rooting
depth distributions in other ecosystems, such as grasslands

and crops, also exert important controls over C and N stor-
age in the soil. Contrasting rooting depth distributions of
forested compared with cropped and grassland ecosystems
under elevated [CO2] merit further study, and could help
to elucidate the proximal controls over altered rooting dis-
tributions in a CO2-enriched atmosphere.

Deeper rooting distributions under elevated [CO2], and
the interaction of those roots with a soil environment
depleted in oxygen and microbial activity, could lead to
changes in root form and function, as well as changes in the
rate at which root detritus is incorporated into soil organic
matter. Altered rooting distributions also provide exciting
opportunities for research on C and N cycling in the soil.
Advances in the measurement of processes occurring at the
root–soil interface that take advantage of novel methodolo-
gies such as sensors embedded throughout the soil profile,
isotopic partitioning of C fluxes, compound specific chem-
istry, and measurements of nutrient cycling at depth will
provide data needed to inform ecosystem models.

It is important to accurately represent and parameterize
processes occurring throughout the soil profile in models.
The interactions among elevated [CO2] and global change
factors such as rising temperatures and altered precipitation
regimes will almost certainly affect the responses described
here, albeit in uncertain ways. Furthermore, the reconfigu-
ration of current model frameworks to accept data on root-
ing distributions and nutrient cycling at depth in the soil
will facilitate the testing of new hypotheses such as those
conceptualized in Fig. 1. Continued progress in under-
standing the interface between root growth and turnover
and soil C and N cycling, especially at depth in the soil, will
provide critical information needed for understanding cur-
rent ecosystem function, as well as predicting future ecosys-
tem responses to environmental change.
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