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Summary

• Greater fine-root production under elevated [CO2] may increase the input of
carbon (C) and nitrogen (N) to the soil profile because fine root populations turn over
quickly in forested ecosystems.
• Here, the effect of elevated [CO2] was assessed on root biomass and N inputs at
several soil depths by combining a long-term minirhizotron dataset with continuous,
root-specific measurements of root mass and [N]. The experiment was conducted
in a CO2-enriched sweetgum (Liquidambar styraciflua) plantation.
• CO2 enrichment had no effect on root tissue density or [N] within a given diameter
class. Root biomass production and standing crop were doubled under elevated
[CO2]. Though fine-root turnover declined under elevated [CO2], fine-root mortality
was also nearly doubled under CO2 enrichment. Over 9 yr, root mortality resulted
in 681 g m–2 of extra C and 9 g m–2 of extra N input to the soil system under elevated
[CO2]. At least half of these inputs were below 30 cm soil depth.
• Increased C and N input to the soil under CO2 enrichment, especially below 30 cm
depth, might alter soil C storage and N mineralization. Future research should focus on
quantifying root decomposition dynamics and C and N mineralization deeper in the soil.
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New Phytologist (2008) 179: 837–847

No claim to original US government works. 
Journal compilation © New Phytologist (2008) 
doi: 10.1111/j.1469-8137.2008.02516.x

Author for correspondence
C. M. Iversen
Tel: +1 865 241 3961
Fax: +1 865 574 0133
Email: civersen@utk.edu

Received: 3 March 2008
Accepted: 20 April 2008

Introduction

‘Fine’ roots (i.e. roots < 2 mm in diameter that are the most
active in water and nutrient uptake, Pregitzer, 2002, 2003)
comprise up to one-third of annual net primary production
in terrestrial ecosystems (Jackson et al., 1997). Further, the
production of fine roots is expected to increase under elevated
atmospheric [CO2], especially in nitrogen (N)-limited forests
where increased below-ground carbon (C) allocation may
facilitate N acquisition (Zak et al., 1993; Eissenstat et al., 2000;
Norby & Jackson, 2000; BassiriRad et al., 2001). Fine root
populations turn over quickly, often within 1–9 yr in forested
ecosystems (Gill & Jackson, 2000; Norby & Jackson, 2000;
Matamala et al., 2003), and root detritus has a greater
probability of being retained in the soil organic matter pool

than surface litter because it is in intimate contact with the soil
profile (Gale & Cambardella, 2000; Gale et al., 2000). The
stabilization of root-derived C in long-term soil pools (i.e.
pools ranging from centuries to millennia in age, Schlesinger,
1997) may mitigate some portion of future atmospheric
and climatic change. Forested ecosystems may be an especially
important sink for rising [CO2] given that forest soils currently
store nearly half of below-ground terrestrial C (Dixon et al.,
1994).

The annual dynamics of C and N input from root population
growth and mortality (i.e. turnover) are important parameters
in models projecting biosphere responses to atmospheric and
climatic change in N-limited ecosystems (Aber et al., 1997;
Kirschbaum et al., 2003; Franklin, 2007). Decaying fine roots
of woody plants represent an important flux of labile C and
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N to the soil (Aerts et al., 1992), because they turn over
quickly (Eissenstat et al., 2000; Norby & Jackson, 2000) and
have relatively high concentrations of N and carbohydrates
(Guo et al., 2004). However, it is currently uncertain whether
the input of labile root C and N to the soil profile will stimulate
microbial degradation of organic matter and increase soil N
availability (i.e. the ‘priming effect’; cf. Kuzyakov et al., 2000;
Xiao et al., 2007), allowing sustained forest responses to rising
atmospheric [CO2] (Zak et al., 2000; Phillips, 2007). Alter-
natively, greater input of labile C could increase microbial
immobilization of available N and constrain forest production
(de Graaff et al., 2007).

Whether increased fine-root production will lead to changes
in soil N availability and C storage depends largely on the
turnover rate of the fine-root population (Norby & Jackson,
2000), the chemical characteristics of root litter (Sollins et al.,
1996; Zak et al., 2000; Silver & Miya, 2001), and the depth
at which litter is input into the soil profile (Hunt, 1977;
Fontaine et al., 2007). Rising atmospheric [CO2] is projected
to decrease root turnover (as reviewed in Eissenstat et al., 2000)
by altering a suite of fine-root characteristics that are linked to
greater root longevity. For example, CO2 enrichment has been
shown to increase root diameter (cf. Pritchard & Strand,
2008b), decrease root N concentration (Cotrufo & Ineson,
1995), increase mycorrhizal infection (Pritchard et al., 2008a)
and increase rooting depth (Norby et al., 2004; Pritchard et al.,
2008b). Changes in root characteristics or rooting depth may
increase root longevity (cf. Wells & Eissenstat, 2001; Baddeley
& Watson, 2005; Joslin et al., 2006; Withington et al., 2006)
by increasing nutrient gain per unit C cost (i.e. construction or
maintenance respiration; cf. Eissenstat et al., 2000).

Fine-root turnover is hard to measure because of the ‘hidden’
nature of below-ground processes (Norby & Jackson, 2000;
Matamala et al., 2003; Pritchard & Strand, 2008; Strand
et al., 2008), and the fact that roots grow in a branched
pattern, ranging from smaller-diameter younger roots, to
larger-diameter older roots (Pregitzer, 2002, 2003). Root pro-
duction and mortality have been estimated with destructive
soil sampling methods ranging from root in-growth cores to
sequential biomass cores (Vogt et al., 1998; Majdi et al., 2005),
and whole-ecosystem C and N budgets have been used to
constrain estimates of below-ground inputs (Vogt et al., 1998).
Digitized images from minirhizotron cameras are now generally
accepted to be a more accurate measure of root length pro-
duction in ecosystems where production and mortality occur
simultaneously (Johnson et al., 2001; Tierney & Fahey, 2001),
although long-term minirhizotron datasets are needed to
adequately track the turnover rate of fine-root populations
(Strand et al., 2008). Quantitative relationships are necessary to
derive root biomass and N content from minirhizotron mea-
surements of root length and diameter (Vogt et al., 1998; Tingey
et al., 2000; Johnson et al., 2001), but this is complicated by the
fact that root mass per unit length and root N concentration are
both highly related to root diameter (Pregitzer et al., 2002).

We quantified C and N input from fine-root mortality
under ambient (i.e. ‘current’) and elevated [CO2] at several
soil depths in a deciduous sweetgum forest in eastern North
America by combining allometric relationships derived from
samples of individual roots with a long-term minirhizotron
dataset. Fine-root production and mortality length estimates
from minirhizotron images taken in ORNL FACE from 1998
to 2003 have been published previously (Norby et al., 2004).
Our research expanded these data by developing continuous
relationships that enabled us to estimate root biomass and N
content from root length and diameter. We used these
relationships to calculate annual and cumulative root biomass
and N input as a function of soil depth over the entire span of
the experiment to date (a period of 9 yr ranging from 1998 to
2006). Our main questions were: do C and N inputs from root
mortality increase in response to long-term CO2 enrichment;
and, if so, what are the implications for soil C storage and N
cycling?

Materials and Methods

Site description

We conducted our research at the Oak Ridge National
Laboratory (ORNL), free-air CO2 enrichment (FACE)
experiment in a sweetgum (Liquidambar styraciflua L.)
plantation in eastern Tennessee, USA. ORNL FACE has been
described in detail elsewhere (Norby et al., 2001, 2002, 2004),
but briefly, the experiment consists of five 25-m-diameter
rings, of which four have a FACE apparatus installed. Two
rings blow air enriched with CO2 to achieve a concentration
in the canopy of c. 560 ppm, while two rings blow a current
[CO2] of c. 380 ppm; the fifth ring serves as a current [CO2]
treatment without a FACE apparatus. CO2 enrichment was
initiated in 1998 when the sweetgum trees were 10 yr old and
12 m tall. The soil at the FACE site is described as an Aquic
Hapludult, and consists of alluvium washed from upland soils
(Norby et al., 2001, 2002).

Minirhizotron images

Cellulose acetate butyrate minirhizotron tubes (Bartz
Technology, Santa Barbara, CA, USA) of 5.1 cm inner
diameter were installed in each FACE ring in July 1997 at a
60° angle from vertical to a depth of 60 cm (as described in
Norby et al., 2004). Measurements were made using five
tubes per ring. Minirhizotron images were collected in each of
91 frames per tube (12.4 mm wide × 18 mm long) with a
BTC-2 minirhizotron camera with a Smucker handle (Bartz
Technology). Images were collected every 2 wk during the
growing season (April–October), and monthly during the
winter (December–March, Table 1). Before 2004, we did not
film during winter months because cold temperatures resulted
in shrinkage of the minirhizotron tubes, but relatively milder
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winters since 2004 allowed us to film throughout the winter.
For the purposes of this experiment,we considered a ‘year’ to
be the period between leaf-out in the spring (April) and leaf-out
the next spring. Images were captured with the Targa + video
board (True Vision, Indianapolis, USA, 1998–2002) or I-CAP
system (Bartz Technology, 2003–2006), and digitized to
obtain root diameter and length using ROOTS (Michigan
State University, East Lansing, MI, USA, 1998–2002) or
RooTracker (Duke University, Durham, NC, USA, 2003–
2006) software. The same analyst has processed all of the
minirhizotron images captured since the inception of the
experiment.

Root biomass and N content

To determine allometric relationships between root diameter,
biomass and N content, we sampled 30-cm-deep by 5-
cm-diameter cores from the current and elevated CO2 treatments
on 7 June, 8 July, and 27 September 2005 (15–30 cm only),
and on 30 May, 24 July, and 14 September 2006 (in 2005, five
subsamples per ring, and in 2006, six subsamples per ring).
Individual cores were divided into depths of 0–15 cm
and 15–30 cm in the field, and refrigerated at 4°C until
processed.

Roots were separated from the soil using a hydropneumatic
elutriator with a 530 µm filter (Gillison Variety Fabrications,
Benzonia, MI, USA), and large pieces of organic matter were
removed by hand with forceps. After washing, moist roots
were refrigerated at 4°C up to 1 month until they were scanned
on a flatbed scanner (400 dpi, Epson Expression 1680, Epson,
Long Beach, CA, USA). The high-resolution images obtained
from the scanner were digitized using the WinRhizo root-scanning
software program (Regent Instruments, Inc., Québec, Canada)
to determine the total length, volume and surface area of
root in diameter classes ranging from 0 to 4 mm in 0.1 mm
increments. After the entire population of roots in each core
was scanned, three small subsamples, ranging from two to 20
individual roots (10–200 mg total mass depending on root
size), were removed from each 0–15 cm core (five to six cores
per ring), and from a composite of the 15–30 cm cores because

they contained fewer roots (one composite per ring). Sub-
samples were selected by hand to encompass the range of
diameter classes contained in the core or composite sample
(i.e. approx. within 0–0.4 mm, 0.4–0.8 mm and 0.8–4 mm
size classes). The small subsamples were rescanned using the
same WinRhizo parameters as described earlier and oven-dried
at 70°C for at least 48 h to determine root mass per unit
length (RML, mg cm–1). After oven-drying, subsamples were
ground on a Wig-L-Bug dental grinder (Crescent Dental
Manufacturing Co., Chicago, IL, USA), and total N content
was determined on an elemental analyzer (Costech Analytical
Technologies, Inc., Valencia, CA, USA).

Estimation of root biomass and N content from length 
measurements

We used the relationships between root mass per unit length,
root [N] and root diameter (see the Results section) to estimate
root biomass from root length and diameter measurements
derived from digitized root images from 1998 to 2006. Root
production was calculated from the appearance and incremental
growth of individual roots, while root mortality was calculated
from the disappearance of individual roots (without subsequent
reappearance) from the minirhizotron frames as in Johnson
et al. (2001). The biomass of individual roots was scaled to a
volume of soil using the depth-of-field approach; we assumed
that the depth of field in each minirhizotron window was
2 mm (cf. Johnson et al., 2001). Annual mortality, production,
and root N input (i.e. the N content of roots lost to mortality)
were calculated based on the maximum diameter observed for
each individual root within a given year, and standing crop
was calculated based upon the maximum diameter observed
on or before the date of peak standing crop. Root biomass and
N content were summed within individual tubes for each of
four depth increments. We assumed that roots did not resorb
N before senescence (Nambiar & Fife, 1991; Aerts et al., 1992;
Gordon & Jackson, 2000), and that the N content of roots
when they died was predicted by the relationship derived from
live roots. We estimated production, mortality and N input
over the winter when filming was infrequent (see Table 1) by

Table 1 Minirhizotron sampling scheme at ORNL FACE

Year First sampling date Last sampling date Number of sessions Date of peak standing crop

1998 19 Feb 1998 30 Oct 1998 17 27 Jul
1999 18 Mar 1999 26 Oct 1999 15 21 Jun
2000 7 Mar 2000 30 Oct 2000 18 26 Jun
2001 14 Mar 2001 9 Oct 2001 16 27 Aug
2002 15 Mar 2002 22 Oct 2002 17 16 Jul
2003 11 Mar 2003 8 Dec 2003 23 30 Sep
2004 17 Mar 2004 30 Mar 2005 22 14 Oct
2005 15 Apr 2005 15 Mar 2006 21 7 Sep
2006 29 Mar 2006 7 Mar 2007 22 10 Nov
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subtracting the standing crop in the last session in a given year
from that of the first session in the following year (using the
associated diameters in the first and last filming sessions).
Thus, our estimates of root production and mortality are net
values, as roots probably formed and disappeared between
filming intervals ( Johnson et al., 2001). We calculated root
turnover as in Gill & Jackson (2000), where turnover (yr–1)
was equal to annual biomass mortality (g m–2 yr–1) divided by
the peak standing crop (g m–2).

Statistics

We used the ‘NLIN’ procedure in SAS (Version 9.1, SAS
Institute Inc., Cary, NC, USA) to fit a power function to the
relationships between root mass per length (mg cm–1) and
diameter, and root [N] and diameter for the subsamples taken
from cores in 2005 and 2006. We used the SAS ‘Mixed’
procedure to test for differences in root biomass production,
mortality, peak standing crop, N input and turnover under
elevated [CO2] from 1998 to 2006 using year as a repeated
measure (ANOVA tables can be found in Supplementary
material, Table S1). Ring within each treatment or treatment ×
depth combination was the subject of the repeated measure
(cf. Littell, 1996, n = 2 elevated [CO2] plots, n = 3 current
[CO2] plots); CO2 treatment and soil depth were treated as

fixed effects. We used the autoregressive (1) covariance
structure in our model because it yielded the best goodness of
fit (as determined by the Akaike’s information criterion)
when compared with other potential covariance structures
(Littell, 1996; Littell et al., 1998). Nonnormal data were
log-transformed before analysis, and differences were considered
significant at P < 0.05.

Results

All but 10 of the nearly 14 000 roots captured by minirhizotron
filming between 1998 and 2006 were < 2 mm in diameter;
99% of the roots were < 1 mm in diameter. The distribution
of root length lost to annual mortality among diameter
classes did not significantly differ between the current
and elevated [CO2] treatments in any year (P > 0.1, Fig. 1).
Across all years, the weighted average diameter of roots
lost to mortality under elevated CO2 tended to be only
slightly larger on average (0.39 ± 0.01 mm under elevated
CO2, compared with 0.36 ± 0.01 mm under current CO2;
P > 0.08, Table 2). There were no interactions among diameter,
treatment or depth (P > 0.3).

The relationship between root diameter and RML followed
a positive power function (r 2 = 0.96, P < 0.0001, Fig. 2a).
RML did not differ between the current and elevated [CO2]
treatments (P > 0.05), or with soil depth (P > 0.05; data
shown are pooled across depths). The relationship between
root diameter and [N] followed a negative power function
(r 2 = 0.65, P < 0.0001, Fig. 2b), and also did not differ
between the current and elevated [CO2] treatments or by soil
depth (P > 0.05). Root [C] was not related to root diameter
(i.e. the slope was not significantly different from 0, P > 0.1),
and root [C] averaged 46.6 ± 0.2% in the 0–15 cm soil depth,
and 45.4 ± 0.1% in the 15–30 cm soil depth (data not
shown, overall depth effect, P < 0.005).

Elevated [CO2] more than doubled fine-root biomass
production (P < 0.003), and biomass production changed
over time in both treatments (P < 0.001, Table 2). Production
did not differ with soil depth (P > 0.2); there were no interactions
among treatment, depth or time (P > 0.5). Elevated [CO2]
approximately doubled peak standing crop across all years
and soil depths (P < 0.003, Table 2). However, the depth
dynamics of standing crop changed over time (soil
depth × year interaction, P < 0.05). Combined across CO2
treatments, peak standing crop was less below 45 cm soil depth
than at either 0–15 or 15–30 cm in 1998 and 2000 (P < 0.05);
in 2001 there was a large increase in standing crop, especially
below 30 cm soil depth (Table 2). Thereafter, there was no
difference in standing crop among depths (P > 0.4).

Elevated [CO2] nearly doubled fine-root mortality
(P < 0.005, Fig. 3). In contrast to production, the depth
dynamics of mortality changed over time (soil depth × year
interaction, P < 0.05); combined across CO2 treatments, root
mortality was much lower below 45 cm soil depth than at

Fig. 1 Distribution of fine-root mortality length in diameter 
classes (i.e. bins) of 0.1 mm. The length of root in diameter 
classes > 1 mm was included in the analysis, but the proportion 
was minimal and was not included in the figure. Data are averaged 
over all years of the experiment (1998–2006); the error shown is ± 1 
pooled standard error (SE). n = 3 in the current [CO2] treatment 
(open circles) and n = 2 in the elevated [CO2] treatment (closed 
circles).
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shallower depths (i.e. the 0–15 and 15–30 cm depth incre-
ments) from 1998 to 2000 (P < 0.05); in 2001 there was a
large increase in root mortality input, especially at 45–60 cm
soil depth. Thereafter, there was no difference in mortality

among depths (P > 0.1). Elevated [CO2] doubled the N input
from fine-root mortality (P < 0.01), and the amount of N
input from fine-root mortality changed over time in both
treatments (P < 0.0001, Fig. 4). There were no differences in

Table 2 Weighted average root diameter, and annual biomass production and peak standing crop estimates

Year Soil depth

Weighted average diameter (mm) Production (g m–2 yr–1) Peak standing crop (g m–2)

Current [CO2] Elevated [CO2] Current [CO2] Elevated [CO2] Current [CO2] Elevated [CO2]

1998 0–15 cm 0.37 ± 0.00 0.35 ± 0.01 87 ± 29 57 ± 21 34 ± 14 43 ± 30
15–30 cm 0.37 ± 0.03 0.46 ± 0.09 46 ± 17 66 ± 2 38 ± 11 32 ± 9
30–45 cm 0.40 ± 0.07 0.38 ± 0.07 15 ± 7 26 ± 10 9 ± 4 23 ± 13
45–60 cm 0.36 ± 0.03 0.44 ± 0.05 9 ± 6 23 ± 13 4 ± 2 10 ± 5
Total profile 0.38 ± 0.01 0.40 ± 0.01 157 ± 52 171 ± 4 85 ± 28 107 ± 4

1999 0–15 cm 0.41 ± 0.02 0.43 ± 0.00 129 ± 18 118 ± 1 66 ± 14 54 ± 25
15–30 cm 0.41 ± 0.06 0.43 ± 0.07 79 ± 58 98 ± 45 64 ± 42 53 ± 18
30–45 cm 0.34 ± 0.02 0.36 ± 0.04 11 ± 3 34 ± 17 5 ± 1 23 ± 8
45–60 cm 0.43 ± 0.03 0.46 ± 0.04 21 ± 11 36 ± 20 21 ± 9 30 ± 16
Total profile 0.42 ± 0.03 0.43 ± 0.02 239 ± 79 286 ± 9 157 ± 61 160 ± 22

2000 0–15 cm 0.44 ± 0.01 0.42 ± 0.06 86 ± 11 177 ± 35 28 ± 3 46 ± 5
15–30 cm 0.44 ± 0.04 0.49 ± 0.01 68 ± 33 110 ± 65 35 ± 15 52 ± 27
30–45 cm 0.44 ± 0.05 0.45 ± 0.03 69 ± 55 144 ± 59 6 ± 3 49 ± 7
45–60 cm 0.44 ± 0.04 0.41 ± 0.05 47 ± 46 105 ± 45 1 ± 1 17 ± 9
Total profile 0.45 ± 0.02 0.45 ± 0.02 270 ± 104 536 ± 165 69 ± 15 164 ± 36

2001 0–15 cm 0.40 ± 0.03 0.36 ± 0.00 105 ± 36 118 ± 36 59 ± 25 125 ± 14
15–30 cm 0.39 ± 0.05 0.42 ± 0.06 118 ± 65 188 ± 109 94 ± 40 199 ± 130
30–45 cm 0.41 ± 0.06 0.42 ± 0.00 85 ± 57 166 ± 81 81 ± 59 145 ± 70
45–60 cm 0.49 ± 0.09 0.50 ± 0.07 105 ± 90 381 ± 206 76 ± 68 300 ± 155
Total profile 0.43 ± 0.05 0.43 ± 0.04 414 ± 206 853 ± 530 311 ± 161 768 ± 418

2002 0–15 cm 0.35 ± 0.03 0.39 ± 0.02 52 ± 17 129 ± 15 45 ± 28 91 ± 17
15–30 cm 0.42 ± 0.01 0.41 ± 0.08 79 ± 7 123 ± 48 57 ± 22 108 ± 62
30–45 cm 0.38 ± 0.03 0.41 ± 0.02 70 ± 34 221 ± 31 48 ± 36 152 ± 58
45–60 cm 0.38 ± 0.04 0.47 ± 0.01 45 ± 27 329 ± 116 24 ± 16 251 ± 113
Total profile 0.39 ± 0.02 0.42 ± 0.03 245 ± 61 802 ± 258 175 ± 75 603 ± 265

2003 0–15 cm 0.27 ± 0.01 0.28 ± 0.01 61 ± 24 78 ± 14 39 ± 17 73 ± 7
15–30 cm 0.31 ± 0.01 0.36 ± 0.04 29 ± 11 72 ± 17 40 ± 7 64 ± 15
30–45 cm 0.33 ± 0.05 0.33 ± 0.02 34 ± 23 74 ± 7 30 ± 16 133 ± 1
45–60 cm 0.36 ± 0.03 0.35 ± 0.03 26 ± 5 92 ± 42 30 ± 16 138 ± 31
Total profile 0.31 ± 0.02 0.32 ± 0.03 149 ± 54 316 ± 40 139 ± 46 407 ± 46

2004 0–15 cm 0.42 ± 0.06 0.30 ± 0.05 70 ± 23 89 ± 40 87 ± 19 94 ± 26
15–30 cm 0.28 ± 0.02 0.32 ± 0.01 40 ± 16 73 ± 11 43 ± 14 86 ± 5
30–45 cm 0.33 ± 0.03 0.35 ± 0.01 70 ± 53 83 ± 23 81 ± 62 160 ± 28
45–60 cm 0.28 ± 0.04 0.38 ± 0.01 29 ± 20 127 ± 22 45 ± 31 185 ± 37
Total profile 0.36 ± 0.01 0.33 ± 0.02 209 ± 79 372 ± 118 255 ± 87 525 ± 106

2005 0–15 cm 0.28 ± 0.03 0.35 ± 0.08 19 ± 5 75 ± 19 15 ± 5 70 ± 19
15–30 cm 0.30 ± 0.03 0.43 ± 0.11 29 ± 18 105 ± 41 31 ± 16 107 ± 41
30–45 cm 0.32 ± 0.02 0.29 ± 0.02 26 ± 20 85 ± 38 35 ± 23 93 ± 8
45–60 cm 0.29 ± 0.02 0.34 ± 0.07 22 ± 16 77 ± 31 25 ± 19 88 ± 20
Total profile 0.30 ± 0.01 0.35 ± 0.07 96 ± 56 341 ± 158 107 ± 61 358 ± 108

2006 0–15 cm 0.28 ± 0.06 0.34 ± 0.01 28 ± 8 87 ± 6 19 ± 4 58 ± 13
15–30 cm 0.29 ± 0.07 0.40 ± 0.11 32 ± 17 67 ± 15 27 ± 13 44 ± 2
30–45 cm 0.25 ± 0.01 0.29 ± 0.05 18 ± 16 67 ± 2 12 ± 9 111 ± 40
45–60 cm 0.26 ± 0.08 0.43 ± 0.10 23 ± 18 32 ± 1 24 ± 20 34 ± 2
Total profile 0.30 ± 0.03 0.37 ± 0.06 102 ± 49 254 ± 29 82 ± 44 247 ± 59

Data are means ± 1 SE of the mean (n = 3 in the current [CO2] treatment, and n = 2 in the elevated [CO2] treatment) at four soil depths, and 
also for the entire soil profile (0–60 cm). The weighted average diameter is of the population of roots lost annually to mortality. The length of 
root of a given diameter was used to weight diameter estimates proportionally. Thus, relatively rare roots with a large diameter did not bias the 
estimated diameter of the root population. Peak standing crop was determined to be when root biomass was greatest in at least three of the 
five rings.
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N input with soil depth (P > 0.6), and no interactions among
treatment, depth or time (P > 0.1). Over 9 yr, elevated [CO2]
nearly doubled the cumulative input of C (P < 0.03) and N
(P < 0.02) from fine-root mortality (Figs 3, 4). There was no

depth effect, or depth × treatment interactions on the cumu-
lative inputs of C or N (P > 0.5).

Averaged across all soil depths, turnover (calculated from
root mortality and peak standing crop) was lower under elevated
[CO2] (P < 0.05, Fig. 5). Turnover decreased over time in
both treatments as the minirhizotron tubes were colonized
(P < 0.0001), and stabilized in 2001 (i.e. turnover did not
differ significantly among years after 2001, P > 0.1). We were
unable to examine the effect of soil depth on turnover rate
before 2001 because there were few roots below 30 cm (i.e.
Table 2). However, we examined depth effects from 2001
onwards when root population turnover appeared stable.
After 2001, the root population in both treatments turned over
more slowly below 30 cm depth (on average 1.1 ± 0.09 yr–1

in the current and 0.8 ± 0.06 yr–1in the elevated [CO2]
treatments) than closer to the soil surface (0–15 cm,
1.3 ± 0.09 yr–1 in the current and 1.1 ± 0.10 yr–1 in the
elevated [CO2] treatments, P < 0.05). There was no effect
of year (P > 0.2), and there were no interactions among
treatment, year or soil depth after 2001 (P > 0.4).

Fig. 2 The relationship between root diameter and root mass per unit 
length (RML) (a) or root nitrogen (N) concentration (b). (a) The 
relationship between root diameter and RML follows a positive 
power function, RML = 3.00 × diameter2.01, that does not differ 
between the current and elevated [CO2] treatments or with soil 
depth. Open circles (n = 292), current [CO2] treatment; closed circles 
(n = 195), elevated [CO2] treatment. Data are pooled across 
collection dates in 2005 and 2006 and across depths. (b) The 
relationship between root diameter and [N] follows a negative power 
function that does not differ between treatments or with soil depth. 
The relationship is [N] = 4.40 × diameter–0.63, where n = 243 in the 
current [CO2] treatment (open circles) and n = 190 in the elevated 
[CO2] treatment (closed circles). Data are pooled across collection 
dates in 2005 and 2006 and across depths. Some data points are 
missing from the initial subsample collections because sample 
weights were too small for combustion to determine root [N].

Fig. 3 Average annual root biomass input (± 1 SE) by soil depth 
(in 15 cm increments) and for the total soil profile (0–60 cm) as 
calculated from the relationship derived in Fig. 2(a). Within each year, 
n = 3 in the current [CO2] treatment (open circles), and n = 2 in the 
elevated [CO2] treatment (closed circles). Cumulative biomass inputs 
over the experiment to date (1998–2006) are shown as bars for each 
soil depth and for the total soil profile, where n = 3 in the current 
[CO2] treatment (open bars), and n = 2 in the elevated [CO2] 
treatment (closed bars).
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Discussion

Root biomass and N input

We quantified biomass and N input from fine-root mortality
in a long-term CO2 experiment in a sweetgum plantation by
using continuous relationships to estimate the biomass and N
content of individual roots from measurements of root length
and diameter (Fig. 2a,b). Elevated [CO2] nearly doubled the
production of root biomass, and, contrary to what we expected,
root production was not greatest near the soil surface (i.e. it
was similar at all of the soil depths that we observed in both
treatments, Table 2). In fact, it appeared that the largest
increases in root production under elevated [CO2] were deeper
in the soil, though there was large variability associated with
biomass estimates at depth (Table 2).

Overall, biomass and N input resulting from root mortality
were twice as great in the elevated [CO2] treatment relative
to the current [CO2] treatment (Figs 3, 4), even though the

fine-root population turned over more slowly in the elevated
relative to the current [CO2] treatment (Fig. 5). Root mortality
was greatest between November and March in both treatments
(i.e. in the winter when filming was done at longer intervals;
see Ledford et al., 2007 for raw data). Ignoring overwinter
dynamics in our calculations of root mortality would have
underestimated annual biomass inputs via root mortality
by up to 65%, even in years when we filmed during winter
months (i.e. 2004–2006). These findings highlight the
importance of quantifying root growth and mortality after
leaf senescence, and also of decreasing the interval between
minirhizotron filming dates when feasible (cf. Johnson et al.,
2001).

Root turnover

Root turnover is expected to decrease under elevated [CO2]
because of declining tissue [N] (Cotrufo & Ineson, 1995;
Cotrufo et al., 1998; Curtis & Wang, 1998; Long et al., 2004),
and associated declines in construction or maintenance
respiration (Eissenstat et al., 2000). However, elevated [CO2]
had no effect on sweetgum root [N] within a given diameter
class (Fig. 2b). Instead, the decline in turnover rate we observed
in response to CO2 enrichment (Fig. 5) may be the result of
increased root proliferation deeper in the soil profile. We
found that in both treatments, the root population turned
over more slowly below 30 cm than closer to the soil surface
(i.e. 0–15 cm). Lower N availability and cooler temperatures

Fig. 4 Average annual nitrogen (N) input from root mortality 
(± 1 SE) by soil depth (in 15 cm increments) and for the total soil 
profile (0–60 cm) as calculated from the relationship derived in 
Fig. 2(b). Within each year, n = 3 in the current [CO2] treatment 
(open circles), and n = 2 in the elevated [CO2] treatment (closed 
circles). Cumulative N inputs over the experiment to date 
(1998–2006) are shown as bars for each soil depth and for the total 
soil profile, where n = 3 in the current [CO2] treatment (open bars), 
and n = 2 in the elevated [CO2] treatment (closed bars).

Fig. 5 Root turnover (± 1 SE) calculated as in Gill & Jackson 
(2000): turnover (yr–1) = root mortality (g m–2 yr–1)/peak standing 
crop (g m–2). Data are cumulative turnover rates across all soil depths. 
Within each year, n = 3 in the current [CO2] treatment (open circles), 
and n = 2 in the elevated [CO2] treatment (closed circles).
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deeper in the soil profile may allow roots to live longer by
reducing respiration costs (Eissenstat et al., 2000; Burton
et al., 2000; Baddeley & Watson, 2005; Joslin et al., 2006).
Increased diameter has also been linked to greater root
longevity in other ecosystems (Wells & Eissenstat, 2001), and
the slight increase in root diameter that we observed under
elevated [CO2] (Table 2) may have also contributed to greater
root longevity. Another mechanism for greater root longevity
could be increased mycorrhizal infection (Eissenstat et al.,
2000). This has been observed in a CO2-enriched loblolly
pine plantation (Pritchard et al., 2008a), but was beyond
the scope of this investigation. Ultimately, a decline in root
turnover under elevated [CO2], or as roots grow deeper in the
soil profile, may lead to delayed C and N input to the soil pool
and result in increased storage of C and N in plant biomass.

Turnover estimated from production (data not shown) was
initially greater, and more variable, than turnover estimated
from root mortality (Fig. 5), indicating that the root population
was not in equilibrium (cf. Burton et al., 2000). However,
the long-term nature of this dataset allowed us to observe the
stabilization of root population turnover under current and
elevated [CO2] over time (Fig. 5; Tierney & Fahey, 2002;
Guo et al., 2008; Pritchard & Strand, 2008; Strand et al.,
2008). Contrary to the widespread assumption that soil
disturbance and increased root proliferation associated with
installation of minirhizotron tubes do not affect estimates of
root production or mortality after 6 –12 months (Joslin &
Wolfe, 1999; Johnson et al., 2001), we found that turnover
calculated from total mortality and peak standing crop did
not stabilize until year 4 of the experiment (Fig. 5). The initial
variability in turnover rate was likely the result of soil distur-
bance and delayed colonization of the minirhizotron tubes; we
have not identified any environmental signals (e.g. temperature
or precipitation) that would explain the result. Our data indicate
that short-term minirhizotron datasets should be viewed with
caution (Strand et al., 2008).

Root characteristics

Several authors have advocated the use of root order (i.e. the
ontological order of a root’s connection within a network of
roots; Pregitzer, 2002; Pregitzer et al., 2002; Guo et al., 2008)
over root diameter to describe root physiology and morphology.
However, our results demonstrate that diameter is an excellent
proxy for root mass and [N], especially given the difficulty of
determining root order from minirhizotron images. Diameter
explained 96% of the variation in root mass per length, and
65% of the variation in root [N] (Fig. 2a,b). These relationships
did not differ from 0 to 30 cm soil depth, and are linear in
a log–log space as predicted by allometric analysis (as
reviewed in Enquist et al., 2007; cf. Andersen et al., in press).
The relationship between root diameter and [N] may differ
deeper in the soil profile, but we were unable to obtain enough
biomass samples below 30 cm depth to develop robust

relationships similar to those in Fig. 2. Continuous, root-
specific relationships enabled us to avoid potentially confoun-
ding effects associated with differences between the diameter
distribution of the minirhizotron data and the data used to
quantify root biomass (Johnson et al., 2001, Majdi et al.,
2005, Tingey et al., 2005). For example, a root mass per length
of 0.65 mg cm–1 was previously used to estimate the biomass
of roots less than 0.5 mm in diameter in ORNL FACE
(Norby et al., 2004). This root mass per length corresponds to
a root diameter of approx. 0.47 mm (Fig. 1), and overestimates
the mass of a length of root in one of the most prominent
diameter classes (0.2–0.3 mm, Fig. 1) by 150–450%.

Implications for long-term soil C and N storage

Elevated [CO2] has increased annual N uptake in the ORNL
FACE sweetgum stand by approx. 20%, but since 2000,
nearly all the extra N taken up by the sweetgum trees under
elevated [CO2] was allocated to support fine-root growth
(methods as described in Norby & Iversen, 2006; R. Norby,
unpublished). Increased N uptake is necessary to support
fine-root proliferation under elevated [CO2] because small
first-order roots have a high [N] (Pregitzer et al., 2002, Fig. 2b),
and we found no decline in individual root C : N under
elevated [CO2] (Fig. 2b).

Over 9 yr, approx. 681 g m–2 of the extra C, and 9 g m–2 of the
extra N taken up by the sweetgum stand under elevated [CO2]
were returned to the soil via root mortality. Note that this cal-
culation assumes that N is not resorbed from senescing roots
(Nambiar & Fife, 1991; Aerts et al., 1992; Gordon & Jackson,
2000). The average C : N of fine root detritus was approx. 75,
which is somewhat greater than the global average C : N of
living fine roots (approx. 40, Jackson et al., 1997). Up to half
of C and N input to the soil from root mortality was below
30 cm soil depth (Figs 3, 4), where soil properties such as oxygen
availability, soil moisture, and temperature may stall the rate
of microbial decomposition and the re-mineralization of N
(Hunt, 1977; Baldock & Skjemstad, 2000). If all of the ‘extra’
N input from greater fine-root mortality under elevated [CO2]
were sequestered in soil organic matter, this would support
approx. 135 g m–2 of extra soil C storage over all soil depths
if C continues to be stored in soil organic matter pools with a
C : N of approx. 15 (Jastrow et al., 2005).

Jastrow et al. (2005) have previously shown C accrual in
the top 5 cm of soil at ORNL FACE attributable to elevated
[CO2] to be approx. 44 g m–2 yr–1 (over the period 1997–
2002). Our data on root C input over 9 yr cannot account for
all of this accrual; we find only 8 g C m–2 yr–1 additional
input from fine-root mortality under elevated [CO2] in the
top 15 cm of soil (39 g C m–2 yr–1 in elevated [CO2] compared
with 31 g C m–2 yr–1 in the current [CO2] treatment.) We
suspect this discrepancy may be explained in part by the
minirhizotron system missing root growth in the top 5 cm of
the soil (cf. Heeraman & Juma, 1993). Root biomass did not
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decline in a linear or exponential fashion with soil depth in
ORNL FACE as has been observed in other forested ecosystems
(Jackson et al., 1996; Matamala & Schlesinger, 2000, Table 2).
Missed growth at the top of the soil profile could increase
the additional root biomass input in the elevated [CO2]
treatment to approx. 20 g C m–2 yr–1 (c. 80 g m–2 yr–1 in
elevated [CO2] compared with c. 60 g m–2 yr–1 under current
[CO2]) given that up to 50% of root biomass in the top 15 cm
at ORNL FACE is found from 0–5 cm depth ( J. Jastrow, pers.
comm.). Further, we have shown that overwinter mortality
(between October and March) can contribute up to two-thirds
of annual biomass input, and we may have missed C and N
inputs before overwinter filming began in 2004. Lastly, leaf
litter inputs at the top of the soil may contribute to soil C
accrual; annual leaf litter inputs were approx. 225 g m–2

under elevated [CO2] compared with 210 g m–2 under cur-
rent [CO2] (methods as in Norby et al., 2002; R. Norby,
unpublished).

Greater C and N sequestration in long-term soil pools
under elevated [CO2] is projected to decrease soil N availability
and, ultimately, forest production (Luo et al., 2004). However,
limited soil N availability has not constrained forest production
or stand N uptake in response to elevated [CO2] thus far in
any of the forested FACE experiments (Norby et al., 2005;
Finzi et al., 2007; Iversen & Norby, 2008). Increased soil
exploration by fine roots has facilitated greater N acquisition
under elevated [CO2] in forested ecosystems (Norby et al.,
2004; Norby & Iversen, 2006; Finzi et al., 2007; Pritchard
et al., 2008b), and root proliferation could further stimulate
soil N availability throughout the soil profile by supplying a
‘fresh’ source of organic matter and energy to the microbial
community (cf. Fontaine et al., 2007). However, it remains
difficult to project future forest responses to global change
because the relationship between forest N uptake and soil N
availability is not well represented in ecosystem models (cf.
Finzi et al., 2007). Further, the soil organic matter dynamics
that determine N mineralization in ecosystem models such as
CENTURY are only simulated in the first 20 cm of the soil
profile (Parton et al., 1988; Ma & Shaffer, 2001). Continued
data-model integration is an important goal in advancing our
understanding of below-ground processes and their impact on
ecosystem responses to global change (Jackson et al., 2000;
Classen & Langley, 2005).

Conclusion

Dynamic C and N cycling in soils are key components of
ecosystem responses to atmospheric and climatic change and
their feedbacks to the atmospheric CO2 and global C cycle.
Here, we have shown that in a forest growing in an elevated
concentration of atmospheric CO2, the flux of C and N into
the soil nearly doubled owing to stimulated root production
and mortality. Moreover, much of the C and N input
occurred relatively deep in the soil profile where the dynamics

of root decomposition and C and N mineralization are likely
to be different from what is commonly observed and modeled
in the upper profile. Contrary to expectations, root [N] did
not decline under elevated [CO2]; other mechanisms, including
increased root diameter or rooting depth, may be responsible
for the decline in root turnover we observed in response to
CO2 enrichment. Continued progress in understanding the
interface between root detritus and soil C and N cycling,
especially at depth in the soil, will improve our ability to predict
ecosystem responses to atmospheric and climatic change.
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