Streamflow Variability and Its Potential Impact on Energy Production

Shih-Chieh Kao, Ph.D.
Outline

• Background

• Streamflow Variability
 – Grand Coulee as an Example
 – Regional Assessment

• National Hydropower Asset Assessment Project

• Copula Applications on Hydrologic Engineering
 – Application I: Extreme Rainfall
 – Application II: Droughts

• Future Research
Background - Hydroelectricity

- Power Generation
 - Hydro: 7% of the US & 19% of the world total
 - Nuclear: 19% of the US & 15% of the world total
- Hydropower generation is not fully proportional to capacity
Other Impact - Nuclear Plant Cooling

- TVA Browns Ferry Nuclear Plant
 - 3494 MW (ORNL Jaguar 5~10 MW)
 - 10% of the TVA total
- Aug 2007, TVA reactor shut down; cooling water from river too hot
 - "We don't believe we've ever shut down a nuclear unit because of river temperature," said John Moulton, spokesman.
- Aug 2010, Browns Ferry reduced to 45% due to water temperature concern
 - TVA spent $40 million to replace the electricity ($2 million per day)

Picture provided by Boualem Hadjerioua
Streamflow Variability

• Streamflow variability is often large and unpredictable
• Joint influence
 – Natural variability
 – Snowmelt and groundwater recharge
 – Dam regulation / power generation
 – Domestic / industrial water usage
 – Vegetation and urbanization
 – Climate change
• Major technical challenges
 – Streamflow at ungauged locations
 – Watershed modeling
 – Climate projection
Grand Coulee

- The largest hydropower facility in the US
- Capacity 6495 MW
- 8.7% of the US Hydropower total
- Upper Columbia River basin
- Capacity factor 39.03%

- 8 out of the 10 largest hydropower facilities from the same region
- Dam attributes were not found in the National Inventory of Dam
Between Generation & Streamflow

 - EIA monthly generation
 - USGS 09423000
 - Strong correlation between flow & generation ($\rho = 0.93$)

- $P = e\gamma QH$
 - e, efficiency; γ, specific weight; Q, flow rate; H, head; P, power
 - $eH = 266.78$ ft
 - if $e = 0.7$, $H = 381.11$ ft
 - Hydraulic head: 380 ft

- Estimate potential power generation from streamflow
Capacity & Performance Factor

• Capacity Factor
 – Generation / (Capacity * 1 year)
 – Fluctuation due to streamflow availability
 – How frequent is a facility utilized?

• Performance (efficiency)
 – $P_{avg} / \gamma Q_{avg} H$
 – Operation and regulation

• Both curves do not act consistently

• Constant head assumption to be relaxed when more detailed data are available
Seasonal Variability

- The upper 20% quantiles varies around 15000 cfs from fall to winter
 - 700000 MWh difference
- Seasonality needs to be properly accounted for
 - Important feature for future site selection
- Streamflow has high temporal correlation
 - How can we utilize some new statistical methods to improve the forecasting?
Regional Assessment

- Analysis of historic generation, runoff, and precipitation time series

USGS Waterwatch Runoff (mm)
- Available for each subbasin (HUC08)
- Computed from observed streamflow normalized by drainage area

PRISM Precipitation
- Available for each (4km)2 grid
- Observation adjusted by topographic features

- Region-based Assessment
Region 06 - Tennessee

Annual Precipitation vs. Generation - Region 06

Annual Runoff vs. Generation - Region 06

Annual Generation (TWh) vs. Precipitation (mm)

Annual Generation (TWh) vs. Runoff (mm)

R² = 0.6242

R² = 0.942
Region 17 - Pacific Northwest

Annual Precipitation vs. Generation - Region 17

Annual Runoff vs. Generation - Region 17

R² = 0.5466

R² = 0.5396
NHAAP (PI: Boualem Hadjerioua)

• National Hydropower Asset Assessment Project (NHAAP)
 – An integrated and up-to-date national hydropower assessment

Data Sources*
 - FERC
 - EIA
 - NID
 - NHD
 - Corps
 - Reclamation
 - TVA
 - USGS
 - Gauges Stations
 - Water Use

Data Processing
 - Data Assembly, Integration and Verification
 - National Water Power Assessment Tools

Outputs
 - National-, Regional-, Basin-, and State-scale

- Reports:
 - Hydropower National Assessment
 - Climate Change Impacts Assessment
 - ReEDS Modeling
 - Other Information Requests

- GIS Tools to study and analyze:
 - Generation & Streamflow
 - Hydropower Opportunities
 - Hydrology
 - Climate

- Graphs, Maps, and Statistics:
 - Current Hydropower Status
 - Capacity & Generation
 - Reservoir Characteristics
 - Infrastructure status

Most of the data are covered by non-disclosure agreements
NHAAP Web-based GIS

- River Network
- Water Bodies
- USGS Gauge Stations
- Hydropower Dam
- Non Power Dam
- Temperature
- Precipitation
Challenge for Ungauged Locations

• ~84,000 non-power dams vs ~22,000 USGS gauges
 – Less than 10,000 gauges are current

• Regression approach: Vogel et al. (1999)
 – Regression formula for 19 HUC02 Regions
 – Variables: drainage area, precipitation, temperature
 – Annual mean flow

• Runoff map approach
 – Runoff: Streamflow normalized by drainage area
 – Water watch approach

• However, the accuracy of stream GIS layers is the dominate factor

3 or 4200 cfs?
Low-flow Analysis

Work with Chris Jochem in supporting of the nuclear plant sitting project
Extreme Rainfall - Univariate Approach

• Selection of annual maximum precipitation
 – *Durations* are not the actual durations of rainfall events
 – Long-term maximum may cover multiple events
 – Short-term maximum encompasses only part of the extreme event

![Histogram of rainfall depth over hours](chart.png)
Correlation and Dependence

- Classification
 - Temporal: autoregression model (AR), Markov chain
 - Spatial: geostatistics (Kriging method)
 - Inter-variable: Bayesian approach

- Conventionally quantified by the Pearson’s linear correlation coefficient ρ

\[
\rho_{xy} = \frac{E[(X - \bar{x})(Y - \bar{y})]}{\text{Std}[X]\text{Std}[Y]}
\]

- Only valid for Gaussian (or elliptic) distributions
Example - Bivariate Distribution

Bivariate Gaussian distribution, $\rho = 0.8$

Marginals

$$f_X(x) = \int_{-\infty}^{\infty} h_{XY}(x, y) dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} h_{XY}(x, y) dx$$

Joint density

$$h_{XY}(x, y)$$

Gaussian marginals with Clayton Copulas

$$\rho = 0.8$$
Copulas

- **Transformation of joint cumulative distribution**
 - \(H_{XY}(x,y) = C_{UV}(u,v) \)
 - Marginals: \(u = F_X(x), v = F_Y(y) \)
 - Sklar (1959) proved that the transformation is unique for continuous r.v.s

- **Use copulas to construct joint distributions**
 - Marginal distributions => selecting suitable PDFs
 - Dependence structure => selecting suitable copulas
 - Together they form the joint distribution
Extreme Rainfall Frequency Analysis

- Bivariate distribution H_{PD}, H_{DI}, H_{PI}
 - Total precipitation (P), duration (D), and peak intensity (I)
 - Marginal: Extreme Value Type I (EV1), Log Normal (LN)
 - Dependence: Frank Family

- Applications
 - Estimate of depth for known duration
 \[F_P(p_T | d - 1 < D \leq d) = 1 - 1/T \]
 - Estimate of peak intensity for known duration
 \[F_I(i_T | d - 1 < D \leq d) = 1 - 1/T \]
 - Estimate of peak intensity for known depth
 \[E[I | P > p] \]
Estimate of depth for known duration

T-year depth p_T given duration d: $F_P(p_T|d-1<D<d)=1-1/T$
Estimate of peak intensity for known duration

T-year peak intensity i_T given duration d: $F_i(i_T|d-1<D<d)=1-1/T$
Rainfall Peak Attributes

- Given depth (P) and duration (D), compute the conditional expectation of peak intensity (I) and percentage time to peak (T_p).
Joint Deficit Index

• Comparison between 1-mn SPI, 12-mn SPI, and JDI
 – 12-mn SPI changes slowly, weak in reflecting emerging drought
 – 1-mn SPI changes rapidly, weak in reflecting accumulative deficit
 – JDI reflects joint deficit
Precipitation vs. Streamflow
Potential of Future Droughts

- Required precipitation for reaching joint normal status ($K_C = 0.5$) in the future
- Probability of drought recovery
Climate Change on Snowmelt Timing

- Investigate the trend of 1960-1999 spring onset (Cayan et al., 2001)
- Simulation: five ensemble members of VIC model
- Observation: 223 unregulated and snowmelt driven USGS stations

Joint work with Moetasim Ashfaq and the co-authors
Climate-induced non-stationary

- Annual maximum precipitation in a 6-hr interval
- Generalized extreme values (GEV) distribution
- Median of global return period corresponding to year-1999 estimates
- Goodness-of-fit tests at 5% significant level:
 - NCEP: 2.56%, ERA40: 1.24%, CCSM3: 0.02%

PI: Auroop R. Ganguly
We are here!
Thank you
Questions?

Shih-Chieh Kao
kaos@ornl.gov; http://www.ornl.gov/~5v1/