next up previous contents
Up: Thesis Previous: 9.2 Future developments   Contents

Bibliography

1
Neil W. Ashcroft and N. David Mermin.
Solid State Physics (Saunders College, Philadelphia, 1976), International edn.

2
Neil S. Szabo and Attila Ostlund.
Modern Quantum Chemistry (McGraw-Hill, New York, 1989).

3
P. Fulde.
Electron Correlations in Molecules and Solids (Springer, 1995).

4
R. McWeeny.
Methods of Molecular Quantum Mechanics (Academic Press, London, 1992).

5
Gene Golub and Charles Van Loan.
Matrix Compuations (The Johns Hopkins University Press, 1989).

6
R. Barrett.
Templates for the Solution of Linear Systems:Building Blocks for Iterative Methods (Society of Industrial and Applied Mathematics, 1994).

7
J. Cízek.
Adv. Chem. Phys. 14, 35 (1969).

8
R. M. Dreizler and E. K. U. Gross.
Density Functional Theory (Springer, 1990).

9
Robert G. Parr and Yang Weitao.
Density-functional Theory of Atoms and Molecules (Oxford University Press, 1994).

10
W. Kohn and L. J. Sham.
Phys. Rev. 140, A1133 (1965).

11
P. Hohenberg and W. Kohn.
Phys. Rev. B 76, 6062 (1964).

12
M. Levy.
Proc. Nat. Acad. Sci. 76, 6062 (1979).

13
D. M. Ceperley and B. J. Alder.
Ground State of the Electron Gas by a Stochastic Method.
Phys. Rev. Lett. 45 (7), 566 (August 1980).

14
R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal and R. J. Needs.
Quantum Monte Carlo investigation of exchange and correlation in silicon.
Phys. Rev. Lett. 78 (17), 3350 (April 1997).

15
R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal and R. J. Needs.
Exchange and correlation in silicon.
Phys. Rev. B 57 (15), 8972 (April 1998).

16
M. E. J. Newman and G. T. Barkema.
Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999).

17
M. P. Allen and D. J. Tildesley.
Computer Simulation of Liquids (Oxford University Press, 1987).

18
W. H. Press, S. A. Teukolsky and W. T. Vetterling.
Numerical Recipes in Fortran 77: The Art of Scientific Computing (Cambridge University Press, 1992).

19
John A. Rice.
Mathematical Statistics and Data Analysis (Duxbury Press, 1995), 2nd edn.

20
N. Metropolis, A. W. Rosenbluth, N. M. Rosenbluth, A. H. Teller and E. Teller.
J. Chem. Phys. 21, 1087 (1953).

21
W. L. McMillan.
Phys. Rev. 138, A442 (1965).

22
R. Jastrow.
Phys. Rev. 98, 1479 (1955).

23
B. L. Hammond, W. A. Lester, Jr. and P. J. Reynolds.
Monte Carlo Methods in Ab Initio Quantum Chemistry (World Scientific, 1994).

24
L. Mitás.
Quantum Monte Carlo.
Current Opinion in Solid State and Materials Science 2, 696 (1997).

25
T. Kato.
Comm. Pure Appl. Math. 10, 151 (1957).

26
S. Fahy, X. W. Wang and S. G. Louie.
Variational Quantum Monte-Carlo nonlocal pseudopotential approach to solids - formulation and application to diamond, graphite, and silicon.
Phys. Rev. B 42 (6), 3503 (August 1990).

27
M. H. Kalos, D. Levesque and L. Verlet.
Phys. Rev. A 9, 2178 (1974).

28
P. J. Reynolds, D. M. Ceperley, B. J. Alder and W. A. Lester, Jr.
Fixed-node quantum Monte-Carlo for molecules.
J. Chem. Phys. 77 (11), 5593 (December 1982).

29
M. P. Nightingale C. J. Umrigar and K. J. Runge.
A diffusion Monte Carlo algorithm with very small time-step errors.
J. Chem. Phys. 99 (4), 2865 (August 1993).

30
James B. Anderson.
Quantum chemistry by random walk.
J. Chem. Phys. 65 (10), 4121 (November 1976).

31
D. M. Ceperley and B. J. Alder.
Quantum Monte Carlo for molecules: Green's function and nodal release.
J. Chem. Phys. 81 (12), 5833 (December 1984).

32
Yongkyung Kwon, D. M. Ceperley and R. M. Martin.
Effects of three-body and backflow correlations in the two-dimensional electron gas.
Phys. Rev. B 48 (16), 12037 (October 1993).

33
Yongkyung Kwon, D. M. Ceperley and R. M. Martin.
Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study.
Phys. Rev. B 58 (11), 6800 (September 1998).

34
R. P. Feynman and M. Cohen.
Phys. Rev. 102, 1189 (1956).

35
D. M. Ceperley.
The statistical error of greens-function Monte-Carlo.
J. Stat. Phys 43 (5-6), 815 (1986).

36
M. Krauss and W. J. Stevens.
Effective potentials in molecular quantum-chemistry.
Ann. Rev. Phys. Chem. 35, 357 (1984).

37
C. J. Umrigar, K. G. Wilson and J. W. Wilkins.
Optimized Trial Wave-functions for Quantum Monte-Carlo Calculations.
Phys. Rev. Lett. 60 (17), 1719 (1988).

38
S. Fahy, X. W. Wang and S. G. Louie.
Variational Quantum Monte-Carlo nonlocal pseudopotential approach to solids - cohesive and structural-properties of diamond.
Phys. Rev. Lett. 61 (14), 1631 (October 1988).

39
David B. Cook.
Handbook of Computational Quantum Chemistry (Oxford University Press, 1998).

40
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos.
Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients.
Rev. Mod. Phys. 64 (4), 1045 (October 1992).

41
S. A. Alexander and R. L. Coldwell.
Atomic wave function forms.
Int. J. Quantum Chem. 63 (5), 1001 (1997).

42
L. Mitás and R. M. Martin.
Quantum Monte-Carlo of Nitrogen - Atom, dimer, atomic, and molecular-solids.
Phys. Rev. Lett. 72 (15), 2438 (1994).

43
J. C. Grossman and L. Mitás.
Structure and stability of molecular carbon - Importance of electron correlation.
Phys. Rev. Lett. 75 (21), 3870 (November 1995).
Erratum: Phys. Rev. Lett. 76, 1006 (1995).

44
J. C. Grossman and L. Mitás.
High accuracy molecular heats of formation and reaction barriers: Essential role of electron correlation.
Phys. Rev. Lett. 79 (22), 4353 (December 1997).

45
J. C. Grossman and L. Mitás.
Quantum Monte-Carlo determination of electronic and structural-properties of $\mathrm{Si}_{n}$ clusters (n$\leq$20).
Phys. Rev. Lett. 74 (8), 1323 (February 1995).

46
A. J. Williamson, S. D. Kenny, G. Rajagopal, A. J. James, R. J. Needs, L. M. Fraser, W. M. C. Foulkes and P. Maccallum.
Optimized wave functions for Quantum Monte Carlo studies of atoms and solids.
Phys. Rev. B 53 (15), 9640 (April 1996).

47
A. J. Williamson.
Quantum Monte Carlo Calculations of Electronic Excitations.
Ph.D. thesis, University of Cambridge (1996).

48
K. C. Huang.
Ab Initio Determinations of Energetics and Forces in Molecules.
Master's thesis, University of Cambridge (1999).

49
P. R. C. Kent, K. C. Huang and R. J. Needs.
Unpublished.

50
D. Ceperley, G. V. Chester and M. Kalos.
Monte Carlo simulation of a many-fermion study.
Phys. Rev. B 16 (7), 3081 (October 1977).

51
P. P. Ewald.
Ann. Phys. (Leipzig) 64, 253 (1921).

52
G. Rajagopal and R. J. Needs.
An optimised Ewald method for long-ranged potentials.
J. Comput. Phys. 115 (2), 399 (December 1994).

53
C. Filippi and C. J. Umrigar.
Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules.
J. Chem. Phys. 105 (1), 213 (July 1996).

54
Walter J. Stevens, Harold Basch and Morris Krauss.
Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms.
J. Chem. Phys. 81 (12), 6026 (December 1984).

55
D. R. Hamann, M. Schlüter and C. Chiang.
Norm-Conserving Pseudopotentials.
Phys. Rev. Lett. 43 (20), 1494 (November 1979).

56
G. B. Bachelet, D. R. Hamann and M. Schlüter.
Pseudopotentials that work: From H to Pu.
Phys. Rev. B 26 (8), 4199 (October 1982).

57
G. P. Kerker.
Non-singular atomic pseudopotentials for solid state applications.
J. Phys. C 13 (9), 189 (March 1980).

58
N. Troullier and José Luís Martins.
Efficient pseudopotentials for plane-wave calculations.
Phys. Rev. B 43 (3), 1993 (January 1991).

59
David Vanderbilt.
Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.
Phys. Rev. B 41 (11), 7892 (April 1990).

60
E. L. Shirley and R. M. Martin.
$GW$ quasi-particle calculations in atoms.
Phys. Rev. B 47 (23), 15404 (June 1993).

61
Y. Lee, P. R. C. Kent, M. D. Towler and R. J. Needs.
Pseudopotentials for Transition Metals.
Unpublished.

62
A. D. McLaren.
J. Math. Comp. 17, 361 (1963).

63
L. Mitás, E. L. Shirley and D. M. Ceperley.
Nonlocal pseudopotentials and diffusion Monte Carlo.
J. Chem. Phys. 95 (5), 3467 (September 1991).

64
Andrea Bosin, Vincenzo Fiorentini, Andrea Lastri and Giovanni B. Bachelet.
Local norm-conserving pseudo-Hamiltonians.
Phys. Rev. A 52 (1), 236 (July 1995).

65
B. L. Hammond, P. J. Reynolds and W. A. Lester, Jr.
Valence quantum Monte Carlo with ab initio effective core potentials.
J. Chem. Phys. 87 (2), 1130 (July 1987).

66
M. M. Hurley and P. A. Christiansen.
Relativistic effective potentials in quantum Monte-Carlo calculations.
J. Chem. Phys. 86 (2), 1069 (January 1987).

67
P. H. Acioli and D. M. Ceperley.
Generation of pseudopotentials from correlated wave-functions.
J. Chem. Phys. 100 (11), 8169 (June 1994).

68
E. L. Shirley and R. M. Martin.
Many-body core-valence partitioning.
Phys. Rev. B 47 (23), 15413 (June 1993).

69
P. A. Christiansen.
Effective potentials and multiconfiguration wave-functions in quantum Monte-Carlo calculations.
J. Chem. Phys. 88 (8), 4867 (April 1988).

70
M. Dolg, U. Wedig, H. Stoll and H. Preuss.
Energy-adjusted abintio pseudopotentials from the 1st-row transition-elements.
J. Chem. Phys. 86 (2), 866 (January 1987).

71
E. L. Shirley, Xuejun Zhu and S. G. Louie.
Core polarization in solids: Formulation and application to semiconductors.
Phys. Rev. B 56 (11), 6648 (September 1997).

72
Jack Sugar and Charles Corliss.
Atomic Energy Levels of the Iron-Period Elements: Potassium through Nickel.
Journal of Physical and Chemical Reference Data 14 (2), 147 (1985).

73
N. K. Wannier.
Rev. Mod. Phys. 64, 1045 (1992).

74
J. M. Ziman.
Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972), 2nd edn.

75
M. C. Rapaport.
The Art of Molecular Dynamics Simulation (Cambridge University Press, 1995).

76
S. W. de Leeuw, J. W. Perram and E. R. Smith.
Proc. Roy. Soc. Lond A 27, 373 (1980).

77
J. W. Perram, H. G. Peterson and S. W. de Leeuw.
An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles.
Mol. Phys. 65 (4), 875 (1988).

78
Christopher A. White and M. J. Head-Gordon.
Derivation and efficient implementation of the fast multipole method.
J. Chem. Phys. 101 (8), 6593 (October 1994).

79
L. Greengard and V. Rokhlin.
On the evaluation of electrostatic interactions in molecular modeling.
Chem. Scripta 29A, 139 (1989).

80
H. Conroy.
J. Chem. Phys. 41, 1331 (1964).

81
K. E. Schmidt and J. W. Moskowitz.
Correlated Monte Carlo wave functions for the atoms He through Ne.
J. Chem. Phys. 93 (6), 4172 (September 1990).

82
R. N. Barnett, Z. Sun and W. A. Lester, Jr.
Fixed-sample optimization in quantum Monte Carlo using a probability density function.
Chem. Phys. Lett. 273 (5-6), 321 (July 1997).

83
P. R. C. Kent, R. Q. Hood, A. J. Williamson, R. J. Needs W. M. C. Foulkes and G. Rajagopal.
Finite-size errors in quantum many-body simulations of extended systems.
Phys. Rev. B 59 (3), 1917 (January 1999).

84
S. Fahy.
Unpublished.

85
M. L. Cohen and T. K. Bergstresser.
Phys. Rev. 141, 789 (1966).

86
L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny and A. J. Williamson.
Finite-size effects and Coulomb interactions in Quantum Monte-Carlo calculations for homogeneous systems with periodic boundary conditions.
Phys. Rev. B 53 (4), 1814 (January 1996).

87
A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. M. C. Foulkes, Y. Wang and M.Y.Chou.
Elimination of Coulomb finite-size effects in quantum many-body simulations.
Phys. Rev. B 55 (8), 4851 (February 1997).

88
J. P. Perdew and A. Zunger.
Self-interaction correction to density-functional approximations for many-electron systems.
Phys. Rev. B 23 (10), 5048 (May 1981).

89
D. Ceperley.
Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions.
Phys. Rev. B 18 (7), 3126 (October 1978).

90
D. M. Ceperley and B. J. Alder.
Ground state of solid hydrogen at high pressures.
Phys. Rev. B 36 (4), 2092 (August 1987).

91
B. Tanatar and D. M. Ceperley.
Ground state of the two-dimensional electron gas.
Phys. Rev. B 39 (8), 5005 (March 1989).

92
G. E. Engel, Y. Kwon and R. M. Martin.
Quasi-particle bands in a 2-dimensional crystal found by $GW$ and quantum Monte-Carlo calculations.
Phys. Rev. B 51 (19), 13538 (May 1995).

93
G. Rajagopal, R. J. Needs, S. D. Kenny, W. M. C. Foulkes and A. J. James.
Quantum Monte-Carlo Calculations for solids using special k points methods.
Phys. Rev. Lett. 73 (14), 1959 (October 1994).

94
G. Rajagopal, R. J. Needs, A. James, S. D. Kenny and W. M. C. Foulkes.
Variational and diffusion Quantum Monte Carlo calculations at nonzero wave vectors: Theory and application to diamond-structure germanium.
Phys. Rev. B 51 (16), 10591 (April 1995).

95
A. Baldereschi.
Phys. Rev. B 7, 5212 (1973).

96
H. J. Monkhorst and J. D. Pack.
Special points for Brillouin-zon integrations.
Phys. Rev. B 13 (12), 5188 (June 1976).

97
X. P. Li, D. M. Ceperley and R. M. Martin.
ohesive energy of silicon by the Green's-function Monte Carlo method.
Phys. Rev. B 44 (19), 10929 (November 1991).

98
O. W. Day, D. W. Smith and C. Garrod.
Int. J. Quantum Chem. Symp. 8, 501 (1974).

99
M. M. Morrell, R. G. Parr and M. Levy.
Calculation of ionization potentials from density matrices and natural functions, and the long-range behavior of natural orbitals and electron density.
J. Chem. Phys. 62 (2), 549 (January 1975).

100
P. R. C. Kent, R. Q. Hood, M. D. Towler, R. J. Needs W. M. C. Foulkes and G. Rajagopal.
Quantum Monte Carlo calculations of the one-body density matrix and excitation energies of silicon.
Phys. Rev. B 57 (24), 15293 (June 1998).

101
L. Mitás.
Electronic structure by quantum Monte Carlo: Atoms, molecules and solids.
Comput. Phys. Commun. 96 (2-3), 107 (1996).

102
L. Mitás.
Electronic Properties of Solids Using Cluster Methods, p. 151 (Plenum, New York, 1995).

103
A. J. Williamson, R. Q. Hood, R. J. Needs and G. Rajagopal.
Diffusion quantum Monte Carlo calculations of the excited states of silicon.
Phys. Rev. B 57 (19), 12140 (May 1998).

104
W. Knorr and R. W. Godby.
Investigating exact density-functional theory of a model semiconductor.
Phys. Rev. Lett. 68 (5), 639 (February 1992).

105
W. Borrmann and P. Fulde.
Exchange and correlation effects on the quasiparticle band structure of semiconductors.
Phys. Rev. B 35 (18), 9569 (June 1987).

106
S. Ögüt, J. R. Chelikowsky and S. G. Louie.
Quantum Confinement and Optical Gaps in Si Nanocrystals.
Phys. Rev. Lett. 79 (9), 1770 (September 1997).

107
A. Franceschetti, L. W. Wang and A. Zunger.
Comment on ``Quantum Confinement and Optical Gaps in Si Nanocrystals''.
Phys. Rev. Lett. 83 (6), 1269 (September 1999).

108
K.-H. Hellwege, O. Madelung and Landolt-Börnstein, eds.
Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin, 1982).

109
P. Löwdin.
Phys. Rev. 97, 1474 (1955).

110
P. Löwdin.
Phys. Rev. 97, 1490 (1955).

111
P. Löwdin.
Phys. Rev. 97, 1509 (1955).

112
T. Koopmans.
Physica 1, 104 (1924).

113
C. W. Greef and W. A. Lester, Jr.
Quantum Monte Carlo binding energies for silicon hydrides.
J. Chem. Phys. 106 (15), 6412 (April 1997).

114
A. Lüchow and J. Anderson.
First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo.
J. Chem. Phys. 105 (17), 7573 (November 1996).

115
H. Eckstein, W. Schattke, M. Reigrotzki and R. Redmer.
Variational quantum Monte Carlo ground state of GaAs.
Phys. Rev. B 54 (8), 5512 (August 1996).

116
Chien-Jung Huang, C. J. Umrigar and M. P. Nightingale.
Accuracy of electronic wave functions in quantum Monte Carlo: The effect of high-order correlations.
J. Chem. Phys. 107 (8), 3007 (1997).

117
P. O. Löwdin.
J. Chem. Phys. 61, 55 (1957).

118
W. Meyer.
PNO-CI studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane.
J. Chem. Phys. 58 (3), 1017 (1973).

119
M. Caffarel and D. M. Ceperley.
A Bayesian analysis of Green's function Monte Carlo correlation functions.
J. Chem. Phys. 97 (11), 8415 (December 1992).

120
D. M. Ceperley and B. Bernu.
The calculation of excited state properties with quantum Monte Carlo.
J. Chem. Phys. 89 (10), 6316 (November 1988).

121
S. Fahy, X. W. Wang and S. G. Louie.
Pair-correlation function and single-particle occupation numbers in diamond and silicon.
Phys. Rev. Lett. 65 (12), 1478 (September 1990).

122
S. Tanaka.
Variational Quantum Monte-Carlo approach to the electronic- structure of NiO.
J. Phys. Soc. Japan 64 (11), 4270 (1995).

123
J.F. Cornwell.
Group Theory in Physics Vol. 1 (Academic Press (London), 1984).

124
B. Williams.
Compton Scattering (McGraw-Hill, New York, 1976).

125
E. Eisenberger and P. M. Platzman.
Compton scattering of X rays from bound electrons.
Phys. Rev. A 2 (2), 415 (August 1970).

126
Balázs Králik, Paul Delaney and Steven G. Louie.
Correlation Effects in the Compton Profile of Silicon.
Phys. Rev. Lett. 80 (19), 4253 (May 1998).

127
Claudia Filippi and David M. Ceperley.
Quantum Monte Carlo calculation of Compton profiles of solid lithium.
Phys. Rev. B 59 (12), 7907 (March 1999).

128
L. Lam and P. M. Platzman.
Momentum density and Compton profile of the inhomogeneous interacting electronic system. I. Formalism.
Phys. Rev. B 9 (12), 5122 (June 1974).

129
Paul Delaney, Balázs Králik and Steven G. Louie.
Compton profiles of Si: Pseudopotential calculation and reconstruction effects.
Phys. Rev. B 58 (8), 4320 (August 1998).

130
C. Pisani, V. R. Saunders, C. Roetti, M. Causà, N. M. Harrison, R. Orlando and E. Aprà.
CRYSTAL 95 User Manual (1996).

131
R. P. Feynman.
Phys. Rev. 94, 262 (1954).

132
R. C. Morrison.
The extended Koopmans' theorem and its exactness.
J. Chem. Phys. 96 (5), 3718 (March 1992).

133
O. W. Day and D. W. Smith.
Extension of Koopmans' theorem. I. Derivation.
J. Chem. Phys. 62 (1), 113 (January 1975).

134
L. Adamowicz, J. C. Ellenbogen and E. A. McCullough.
Extended-Koopmans-theorem approach to abinitio calculations upon the ground-state and 1st excited-state of the LiH anion.
Int. J. Quantum Chem. 30 (5), 617 (November 1986).

135
J. R. Chelikowsky and M. L. Cohen.
Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors.
Phys. Rev. B 14 (2), 55 (July 1976).

136
M. Rohlfing, P. Krüger and J. Pollmann.
Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets.
Phys. Rev. B 48 (24), 17791 (December 1993).

137
W. Weltner, Jr. and R. J. Van Zee.
Carbon Molecules, Ions and Clusters.
Chem. Rev. 89, 1713 (1989).

138
H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley.
$\mathrm {C}_{60}$ - Buckminsterfullerene.
Nature (London) 318 (6042), 162 (1985).

139
Alan Van Orden and Richard J. Saykally.
Small Carbon Clusters: Spectroscopy, Structure, and Energetics.
Chem. Rev. 98 (6), 2313 (1998).

140
P. W. Fowler and D. E. Manolopoulos.
An Atlas of Fullerenes (Clarendon Press, Oxford, 1995).

141
H. Handschuh, G. Gantefor, B. Kessler, P. S. Bechthold and W. Eberhardt.
Stable Configurations of Carbon Clusters - Chains, Rings, and Fullerenes.
Phys. Rev. Lett. 74 (7), 1095 (February 1995).

142
G.von Helden et al.
Do small fullerenes exist only on the computer - experimental results on $\mathrm{C}_{20}$(+/-) and $\mathrm {C}_{24}$(+/-).
Chem. Phys. Lett. 204 (1-2), 15 (March 1993).

143
H. Kietzmann, R. Rochow, G. Gantefor, W. Eberhardt, K. Vietze, G. Seifert and P. W. Fowler.
Electronics structure of small fullerenes: Evidence of high stability of $\mathrm {C}_{32}$.
Phys. Rev. Lett. 81 (24), 5378 (December 1998).

144
Jerzy Cioslowski.
Electronic Structure Calculations on Fullerenes and Their Derivatives (Oxford University Press, 1995).

145
Gustavo E. Scuseria.
Ab initio calculations of fullerenes.
Science 271 (5251), 942 (February 1996).

146
Martin Feyereisen, Maciej Gutowski and Jack Simons.
Relative stabilities of fullerene, cumulene, and polyacetylene structures for $\mathrm{C}_{n}$: $\mathrm{n}=18-60$.
J. Chem. Phys. 96 (4), 2926 (February 1992).

147
Y. Shlakhter, Svetlana Sokolova, Arne Lüchow and ames B. Anderson.
Energetics of carbon clusters $\mathrm{C}_{8}$ and $\mathrm{C}_{10}$ from all-electron Quantum Monte Carlo calculations.
J. Chem. Phys. 110 (22), 10725 (June 1999).

148
A. D. Becke.
Density-functional exchange-energy approximation with correct asymptotic-behavior.
Phys. Rev. A 38 (6), 3098 (1988).

149
C. Lee, W. Yang and R. G. Parr.
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.
Phys. Rev. B 37 (2), 785 (January 1988).

150
Frank Jensen and Henrik Koch.
$\mathrm {C}_{24}$: Ring or fullerene?
J. Chem. Phys. 108 (8), 3213 (February 1988).

151
Krishnan Raghavachari, B. L. Zhang, J. A. Pople, B. G. Johnson and P. M. W. Gill.
Isomers of $\mathrm {C}_{24}$ - density-functional studies including gradient corrections.
Chem. Phys. Lett. 220 (6), 385 (April 1994).

152
Jan M. L. Martin, J. ElYazal and J. P. Francois.
On the structure and vibrational frequencies of $\mathrm {C}_{24}$.
Chem. Phys. Lett. 255 (1-3), 7 (June 1996).

153
H. W. Kroto.
The stability of the fullerenes $\mathrm {C}_{24}$, $\mathrm {C}_{28}$, $\mathrm {C}_{32}$, $\mathrm{C}_{36}$, $\mathrm{C}_{50}$, $\mathrm {C}_{60}$, and $\mathrm{C}_{70}$.
Nature (London) 329 (6139), 529 (October 1987).

154
A. D. Becke.
Density-functional thermochemistry. III. The role of exact exchange.
J. Chem. Phys. 98 (7), 5648 (April 1993).

155
R. O. Jones.
Density functional study of carbon clusters $\mathrm{C}_{2n}$, $(2\leq n \leq 16)$. I. Structure and bonding in the neutral clusters.
J. Chem. Phys. 110 (11), 5189 (March 1999).

156
Jan M. L. Martin.
$\mathrm {C}_{28}$: The smallest stable fullerene?
Chem. Phys. Lett. 255 (1-3), 1 (June 1996).

157
M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople.
Gaussian 94.
Gaussian Inc., Pittsburgh, PA (1995).

158
T. H. Dunning, Jr.
Gaussian-basis sets for use in correlated molecular calculations .I. The atoms boron through neon and hydrogen.
J. Chem. Phys. 90 (2), 1007 (1989).

159
Jan M. L. Martin.
Basis set convergence and performance of density functional theory including exact exchange contributions for geometries and harmonic frequencies.
Mol. Phys. 86 (6), 1437 (1995).

160
J. P. Perdew, Kieron Burke and Matthias Ernzerhof.
Generalized Gradient Approximation Made Simple.
Phys. Rev. Lett. 77 (18), 3865 (October 1996).

161
L. Mitás.
Unpublished.

162
Ting Guo, M. D. Diener, Y. Chai, M. J. Alford, R. E. Haufler, S. M. McClure, T. Ohno, J. H. Weaver, G. E. Scuseria and R. E. Smalley.
Uranium stabilization of $\mathrm {C}_{28}$ - a tetravalent fullerene.
Science 257 (5077), 1661 (September 1992).

163
Jeongnim Kim, Giulia Galli, John W. Wilkins and Andrew Canning.
Disordered and ordered $\mathrm {C}_{28}$ solids.
J. Chem. Phys. 108 (6), 2631 (February 1998).

164
C. Piscotti, T. Yarger and A. Zettl.
$\mathrm{C}_{36}$, a new carbon solid.
Nature (London) 393, 771 (June 1998).

165
K. S. Pitzer and E. Clementi.
J. Am. Chem. Soc. 81, 4477 (1959).

166
W. K. Leung, R. J. Needs, G. Rajagopal, S. Itoh and S. Ihara.
Calculations of Silicon Self-Interstitial Defects.
Phys. Rev. Lett. (1999).
Accepted for publication.

167
R. Q. Hood, P. R. C. Kent, R. J. Needs, G. Rajagopal and P. R. Briddon.
Calculations of the neutral vacancy in diamond.
Unpublished.


© Paul Kent