
A Discrete EVent system Simulator

Jim Nutaro

September 7, 2011

ii

Contents

1 About this manual 1

2 Building and Installing 3

3 Modeling and simulation with Adevs 5

4 Atomic Models 19

5 Network Models 31
5.1 Parts of a Network Model . 31
5.2 Simulating a Network Model . 34
5.3 A complete example of a network model . 35
5.4 Digraph Models . 37
5.5 Cell Space Models . 44

6 Variable Structure Models 49
6.1 Building and Simulating Variable Structure Models . 49
6.2 A Variable Structure Example . 51

7 Continuous Models 59
7.1 Differential equation modeling with the ode system class . 59
7.2 Modeling hybrid systems with adevs and OpenModelica . 63

8 The Simulator Class 71

9 Simulation on multi-core computers 73
9.1 Limits of the parallel simulator . 75
9.2 Modifying your models to exploit lookahead . 75
9.3 Partitioning your model . 78
9.4 Interaction between partitioning and lookahead . 79
9.5 A complete example . 80
9.6 Memory management of input and output across thread boundaries 84
9.7 Summary of main points regarding repeatable outcomes and performance 86

10 Models with Many Input/Output Types 87

11 Random Numbers 91

12 Interpolation 93

iii

iv

Chapter 1

About this manual

The purpose of this manual is to get you working with Adevs as quickly as possible. To that end, it documents
the simulation engine’s major features with a focus on how they are used. The table of contents summarizes
those aspects of the simulator that are described here.

Among the features omitted from this manual, the Java language bindings for the Adevs simulator are
both useful enough and mature enough to warrant a brief mention. Build instructions for the Java bindings
are given in the “Build and Install” section. How to use these bindings will be more or less obvious once you
have perused the C++ interface: the interfaces for building models and running simulations are essentially
the same.

Use of the Java bindings entails several trade offs. There are three chief disadvantages. First, you pay
a (usually unnoticeable) cost in execution time for the extra work that Adevs must to do manage memory
associated with input and output objects and models orphaned during structure changes. Second, the
facilities for combined simulation of discrete event and continuous models have not been implemented for
Java. Third, this is not a ‘pure Java’ simulation engine; it uses a great deal of native code to do its work
(though this is invisible to the programmer).

There are at least two very positive aspects of the Java bindings. First is that it omits the need for
managing memory. The Java garbage collector (plus some extra work by the simulation engine) takes care
of this for you. Second, you have access to all of the very nice features and standard libraries of the Java
programming language.

Other topics not included in this manual are theory (why was the simulator build this way?) and
experimental features of the simulation engine. Among the latter are support for simulation of hybrid
differential-algebraic systems and conservative, parallel simulation using multi-core processors. If you are
interested in any of these subjects, I offer the following (greatly abridged) list of books and articles:

1. A. M. Uhrmacher. Dynamic structures in modeling and simulation: a reflective approach, ACM
Transactions on Modeling and Computer Simulation, Vol. 11, No. 2 , pp. 206-232. April 2001. The
approach by Adevs to modeling and simulation of dynamic structure systems is described in this paper.

2. Bernard P. Zeigler, Tag Gon Kim and Herbert Praehofer. Theory of Modeling and Simulation, Second
Edition. Academic Press. 2000. The Discrete Event System Specification (DEVS) is developed in this
book from its roots in abstract systems theory.

3. James J. Nutaro. Building Software for Simulation: Theory and Algorithms, with Applications in
C++. Wiley. 2010. This book presents the Discrete Event Systems Specification along side code for
the (slightly abridged) Adevs simulator and examples of its use. This book describes the conservative,
parallel simulator, documentation for which is not included in this manual. It also discusses the
construction of new ODE and event finding modules for Adevs.

Question and comments about this software can be sent to its maintainer, Jim Nutaro, at nutarojj@ornl.gov.

1

2

Chapter 2

Building and Installing

The Adevs package is organized into the following directory structure:

adevs-x.y.z

+->docs

+->examples

+->include

+->src

+->test

+->util

The Adevs package consists almost entirely of template classes, and these are implemented entirely within the
header files located in the include directory. The only exceptions to this are the random number generators,
the Java language bindings, and some rarely used aspects of the parallel simulation engine. Therefore, if you
do not want to use these features, its sufficient for your program to simply include adevs.h and, of course,
to make sure that your compiler can find the include directory that adevs.h is in.

If you do want to use features not implemented in the header files, then a static library that containing
these additional features needs to be built and, if desired, you will need to build the Java libraries. To do
this, start by entering the src directory. To build the Adevs library, which contains the random number
generator and some features used by the parallel simulator, execute the command ’make’ (if you are using a
*nix type system) or ’build’ if you are using Windows. For Windows, the batch file will create a static link
library called adevs.lib. For *nix type systems, the makefile will create a static link library called libadevs.a.

If you are building on a Windows system, make sure that you execute the batch file from the Visual C++
command prompt. This will ensure the batch file can find the compiler, linker, etc. For *nix type systems,
make sure you have installed a recent version of the GNU C++ compiler and make. You may need to edit
the makefile (i.e., the file Makefile) to set compiler flags, etc. though the defaults should work in most cases.

To build the Java language bindings, you need to have the Sun (now Oracle?) JDK installed or something
that is compatible with it. On a Windows system, from the src directory enter the adevs jni directory and
then execute the command ’build’. This will create three files: adevs.jar, java adevs.dll, and java adevs.lib.
To build and run your Java programs, you will need to put adevs.jar into your classpath and java adevs.lib

into your java.library.path (or make sure it is in your regular PATH for finding executables and dynamic
link libraries).

On a *nix type system, stay in the src directory and execute the command ’make java adevs’. This will
create two files: adevs.jar and libjava adevs.so. As before, you need to put adevs.jar into your classpath
and libjava adevs.so into your java.library.path or make sure it is in your regular LD LIBRARY PATH (or
whatever you use) for locating dynamic link libraries.

If you want to run the test suite (which is in no way required to use the software), then first you need
to build the library file and install Tcl (the test scripts need Tcl to run; if you can run ‘tclsh’ then you
already have a working copy of Tcl). If you want to test the Java bindings, you will need to build those

3

too. There are three sets of tests that can be executed: one for the serial simulation engine, one for the
parallel simulation engine, and one for the Java language bindings. To run the basic set of tests for the
serial simulation engine, use ’make check cpp’. To run those tests and the ones for the serial engines use
’make check par’. To run the Java test cases, use ’make java test’. You can run all of these test by simply
executing ’make’. The makefile will abort as soon as any test fails or (more likely) run to completion and
thereby indicate that all of the tests were passed.

The test cases can be a bit of a bear to run on a Windows computer. If you need to edit compiler settings,
executable directives, etc. to make it work, then modify the file make.common. For *nix type systems using
the GNU tools the test cases should work out of the box. Otherwise, edit make.common to fix things for
your development environment.

4

Chapter 3

Modeling and simulation with Adevs

Adevs is a simulator for models described in terms of the Discrete Event System Specification (DEVS)1 The
key feature of models described in DEVS (and implemented with Adevs) is that their dynamic behavior is
defined by events. An event is any kind of change that is significant within the context of the model being
developed.

Modeling of discrete event systems is most easily introduced with an example. Suppose that we want
to model the checkout line at a convenience store. There is a single clerk who serves customers in a first
come-first serve fashion. The time required for the clerk to ring up each customer’s bill depends on the
number of items purchased. We are interested in determining the average and maximum amount of time
that customers spend waiting in the checkout line.

Figure 3.1: Customers waiting in line at BusyMart.

To simulate this system, we need an object to represent each customer in the line. A Customer class
is created for this purpose. Each customer object has three attributes. One attribute is the time needed
to ring up the customer’s bill. Because we want to know how long a customer has been waiting in line, we
also include two attributes that record when the customer entered the queue and when the customer left the
queue. The difference of these times is the amount of time the customer spent waiting in line. Here is the
customer class, from which we will create customer objects as needed. The class is coded in a single header
file Customer.h.

#include "adevs.h"

/// A Busy-Mart customer.

struct Customer

{

/// Time needed for the clerk to process the customer

double twait;

1A comprehensive introduction to the Discrete Event System Specification can be found in “Theory of Modeling and

Simulation, 2nd Edition” by Bernard Zeigler et. al., published by Academic Press in 2000.

5

/// Time that the customer entered and left the queue

double tenter, tleave;

};

/// Create an abbreviation for the Clerk’s input/output type.

typedef adevs::PortValue<Customer*> IO_Type;

Customers are served (processed) by the clerk, which is our first example of an atomic model. The clerk
has a line of people waiting at her counter. When a customer is ready to make a purchase, that customer
enters the end of the line. If the clerk is not busy and the line is not empty, then the clerk rings up the
bill of the customer that is first in line. That customer then leaves the line and the clerk processes the next
customer or, if the line is empty, the clerk sits idly at her counter.

The DEVS model of the clerk is described in a particular way. First, we specify the type of object that
the clerk consumes and produces. For this model, we use PortValue objects. The PortValue class is part
of the Digraph class, which will be introduced later. The PortValue class describes a port-value pair. In
this case, Customer objects are the value and they arrive at the clerk via an “arrive” port; the customers
depart via a “depart” port. Second, we specify the state variables that describe the clerk. In this case, we
need to keep track of which customers are in line. We use a list from the C++ Standard Template Library
for this purpose.

To complete the model of the clerk, we implement four methods that model her behavior. First, let’s
construct the header file for the clerk. Then we can proceed to fill in the details.

#include "adevs.h"

#include "Customer.h"

#include <list>

/**

* The Clerk class is derived from the adevs Atomic class.

* The Clerk’s input/output type is specified using the template

* parameter of the base class.

*/

class Clerk: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Clerk();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Time advance function.

double ta();

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Clerk();

/// Model input port.

static const int arrive;

/// Model output port.

static const int depart;

private:

6

/// The clerk’s clock

double t;

/// List of waiting customers.

std::list<Customer*> line;

/// Time spent so far on the customer at the front of the line

double t_spent;

};

This header file is a template for almost any atomic model that we want to create. The Clerk class is derived
from the Adevs Atomic class. The Clerk implements six virtual methods that it derives from Atomic.
These are the state transition functions delta int, delta ext, and delta conf; the output function output; the
time advance function ta, and the garbage collection method gc. The Clerk also has a set of static, constant
port variables that correspond to the Clerk’s input (customer arrival) and output (customer departure)
ports.

The constructor for the Clerk class invokes the constructor of its Atomic base class. The template
argument of the base class defines the types of objects that the clerk uses for input and output. The Clerk
state variables are defined as private class attributes: these are the list of customers (line), the clerk’s clock
(t), and the time spent so far on the first customer in line (t spent).

The ports arrive and depart are assigned integer values that are unique within the scope of the Clerk
class. Typically, the ports for a model are numbered in a way that corresponds with the order in which they
are listed; for example,

// Assign locally unique identifiers to the ports

const int Clerk::arrive = 0;

const int Clerk::depart = 1;

The Clerk constructor places the Clerk into its initial state. For our experiment, this state is an empty
line and the Clerk’s clock is initialized to zero.

Clerk::Clerk():

Atomic<IO_Type>(), // Initialize the parent Atomic model

t(0.0), // Set the clock to zero

t_spent(0.0) // No time spent on a customer so far

{

}

Because the clerk has an empty line at first, the only interesting thing that can happen is for a customer
arrive. Arriving customers appear on the clerk’s “arrive” input port. The arrival of a customer causes the
clerk’s external transition method to be activated. The arguments to the method are the time that has
elapsed since the clerk last changed state and a bag of PortValue objects.

The external transition method updates the clerk’s clock by adding to it the elapsed time. The time
spent working on the current customer’s order is updated by adding the elapsed time to the time spent so
far. After updating these values, the input events are processed. Each PortValue object has two attributes.
The first is the port; it contains the number of the port that the event arrived on and is equal to “arrive”
in this case. The second is the Customer that arrived. The clerk records the time of arrival for the new
customer and places him at the back of the line.

void Clerk::delta_ext(double e, const Bag<IO_Type>& xb)

{

// Print a notice of the external transition

cout << "Clerk: Computed the external transition function at t = " << t+e << endl;

// Update the clock

t += e;

// Update the time spent on the customer at the front of the line

7

if (!line.empty())

{

t_spent += e;

}

// Add the new customers to the back of the line.

Bag<IO_Type>::const_iterator i = xb.begin();

for (; i != xb.end(); i++)

{

// Copy the incoming Customer and place it at the back of the line.

line.push_back(new Customer(*((*i).value)));

// Record the time at which the customer entered the line.

line.back()->tenter = t;

}

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

The time advance function describes the amount of time that will elapse before the clerk’s next internal
(or self) event, barring an input that arrives in the interim. In this case, the time advance is the time
remaining for the clerk to process the current customer. If there are no customers in line, then the clerk will
not do anything until one arrives, and so the time advance function returns infinity (in Adevs represented
by DBL MAX). Otherwise, the clerk’s next action is when the first customer in line has been rung up, and
so the time advance is the difference of the Customer’s twait and the clerk’s t spent.

double Clerk::ta()

{

// If the list is empty, then next event is at inf

if (line.empty()) return DBL_MAX;

// Otherwise, return the time remaining to process the current customer

return line.front()->twait-t_spent;

}

Two things happen when the clerk finishes ringing up a customer. First, the clerk sends that customer
on his way. This is accomplished when the clerk’s output func is called. When this happens, the Clerk
places the departing customer on its “depart” output port by creating a PortValue object and putting it
into the bag yb of output objects. The clerk’s output function is shown below.

void Clerk::output_func(Bag<IO_Type>& yb)

{

// Get the departing customer

Customer* leaving = line.front();

// Set the departure time

leaving->tleave = t + ta();

// Eject the customer

IO_Type y(depart,leaving);

yb.insert(y);

// Print a notice of the departure

cout << "Clerk: Computed the output function at t = " << t+ta() << endl;

cout << "Clerk: A customer just departed!" << endl;

}

Second, the clerk begins to process the next customer in the line. If, indeed, there is another customer
waiting in line, the clerk begins ringing that customer up just as before. Otherwise, the clerk becomes idle.

8

Enter checkout line Time to process order
1 1
2 4
3 4
5 2
7 10
8 20
10 2
11 1

Table 3.1: Customer arrival times and times needed to process the customers orders.

This is accomplished when the Clerk’s internal transition method is called. The Clerk’s internal transition
method changes the state of the Clerk by removing the departed customer from the line. The clerk’s internal
transition function is shown below.

void Clerk::delta_int()

{

// Print a notice of the internal transition

cout << "Clerk: Computed the internal transition function at t = " << t+ta() << endl;

// Update the clock

t += ta();

// Reset the spent time

t_spent = 0.0;

// Remove the departing customer from the front of the line.

line.pop_front();

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

At this point we have almost completely defined the behavior of the clerk; only one thing remains to be
done. Suppose that a customer arrives at the clerk’s line at the same time that the clerk has finished ringing
up a customer. In this case we have a conflict because the internal transition function and external transition
function must both be activated to handle these two events (i.e., the simultaneous arriving customer and
departing customer). These types of conflicts are resolved by the confluent transition function.

For the clerk model, the confluent transition function is computed using the internal transition function
first (to remove the departed customer from the list) followed by the external transition function (to add
new customers to the end of the list and begin ringing up the first customer). Below is the implementation
of the clerk’s confluent transition function.

void Clerk::delta_conf(const Bag<IO_Type>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

To see how this model behaves, suppose customers arrive according to the schedule shown in the table
below. In this example, the first customer appears on the clerk’s “arrive” port at time 1, the next customer
appears on the “arrive” port at time 2, and so on. The print statements in the Clerk’s internal, external,
and output functions let us watch the evolution of the clerk’s line. Here is the output trace produced by the
above sequence of inputs.

9

Clerk: Computed the external transition function at t = 1

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 2.

Clerk: Computed the output function at t = 2

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 2

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

Clerk: Computed the external transition function at t = 2

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 6.

Clerk: Computed the external transition function at t = 3

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 6.

Clerk: Computed the external transition function at t = 5

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 6.

Clerk: Computed the output function at t = 6

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 6

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 10.

Clerk: Computed the external transition function at t = 7

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 10.

Clerk: Computed the external transition function at t = 8

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 10.

Clerk: Computed the output function at t = 10

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 10

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the external transition function at t = 10

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the external transition function at t = 11

Clerk: There are 5 customers waiting.

Clerk: The next customer will leave at t = 12.

Clerk: Computed the output function at t = 12

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 12

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 22.

Clerk: Computed the output function at t = 22

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 22

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 42.

Clerk: Computed the output function at t = 42

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 42

10

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 44.

Clerk: Computed the output function at t = 44

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 44

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 45.

Clerk: Computed the output function at t = 45

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 45

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

The basic simulation algorithm is illustrated by this example. Notice that the external transition function
is always activated when an input (in this case, a customer) arrives on an input port. This is because the
external transition function describes the response of the model to input events.

The internal transition function is always activated when the simulation clock has reached the model’s
time of next event. The internal transition function describes the autonomous behavior of the model (i.e.,
how the model responds to events that it has scheduled for itself). Internal transitions are scheduled with
the time advance function.

A call to the internal transition function is always immediately preceded by a call to the output function.
Consequently, a model can only produce output by scheduling events for itself. The value of the output is
computed using the model’s current state.

To complete our simulation of the convenience store, we need two other Atomic models. The first model
creates customers for the Clerk to serve. The rate at which customers arrive could be modeled using a
random variable or it with a table such as the one used in the example above. In either case, we hope that
the model of the customer arrival process accurately reflects what happens in a typical day at the convenience
store. Data used in the table for this example could come directly from observing customers at the store, or
it might be produced by a statistical model in another tool (e.g., a spreadsheet program).

We will create an Atomic model called a Generator to create customers. This model is driven by a
table whose format is that used in the previous example. The input file contains a line for each customer.
Each such line has the customer arrival time first, followed by the customer service time. The Generator is
an input free model since all of its events are scripted in the input file. The Generator has a single output
port, which we will call “arrive”, through which it exports arriving customers. The model state is the list of
Customers yet to arrive at the store. Here is the header file for the Generator.

#include "adevs.h"

#include "Customer.h"

#include <list>

/**

* This class produces Customers according to the provided schedule.

*/

class Generator: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Generator(const char* data_file);

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

11

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Time advance function.

double ta();

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Generator();

/// Model output port.

static const int arrive;

private:

/// List of arriving customers.

std::list<Customer*> arrivals;

};

The behavior of this model is very simple. The constructor opens the file containing the customer data
and uses it to create a list of Customer objects. The inter-arrival times of the customers are stored in their
tenter fields. Here is the constructor that initializes the model.

// Assign a locally unique number to the arrival port

const int Generator::arrive = 0;

Generator::Generator(const char* sched_file):

Atomic<IO_Type>()

{

// Open the file containing the schedule

fstream input_strm(sched_file);

// Store the arrivals in a list

double next_arrival_time = 0.0;

double last_arrival_time = 0.0;

while (true)

{

Customer* customer = new Customer;

input_strm >> next_arrival_time >> customer->twait;

// Check for end of file

if (input_strm.eof())

{

delete customer;

break;

}

// The entry time holds the inter arrival times, not the

// absolute entry time.

customer->tenter = next_arrival_time-last_arrival_time;

// Put the customer at the back of the line

arrivals.push_back(customer);

last_arrival_time = next_arrival_time;

}

}

Because the generator is input free, the external transition function is empty. Similarly, the confluent
transition function merely calls the internal transition function (though, in fact, it could be empty because
the confluent transition will never be called).

12

void Generator::delta_ext(double e, const Bag<IO_Type>& xb)

{

/// The generator is input free, and so it ignores external events.

}

void Generator::delta_conf(const Bag<IO_Type>& xb)

{

/// The generator is input free, and so it ignores input.

delta_int();

}

The effect of an internal event (i.e., an event scheduled for the generator by itself) is to first place the
arriving Customer onto the Generator’s “arrive” output port. This is done by the output function.

void Generator::output_func(Bag<IO_Type>& yb)

{

// First customer in the list is produced as output

IO_Type output(arrive,arrivals.front());

yb.insert(output);

}

After the generator has produced this output event, its internal transition function removes the newly arrived
customer from the arrival list.

void Generator::delta_int()

{

// Remove the first customer. Because it was used as the

// output object, it will be deleted during the gc_output()

// method call at the end of the simulation cycle.

arrivals.pop_front();

}

Internal events are scheduled with the time advance function. The Generator’s time advance function
returns the time remaining until the next Customer arrives at the store. Remember that the tarrival
field contains Customers’ inter-arrival times, not the absolute arrival times, and the time advance function
simply returns this value.

double Generator::ta()

{

// If there are not more customers, next event time is infinity

if (arrivals.empty()) return DBL_MAX;

// Otherwise, wait until the next arrival

return arrivals.front()->tenter;

}

To conduct the simulation experiment, it is necessary to connect the Generator’s output to the Clerk’s
input. By doing this, Customer objects output on the Generator’s “arrive” output port appear as input
on the Clerk’s “arrive” input port. This input event causes the Clerk’s external transition function to be
activated. The relationship between input and output events can be best understood by viewing the whole
model as two distinct components, the Generator and the Clerk, that are connected via their input and
output ports. This view of the model is depicted in Figure 3.2.

As Figure 3.2 suggests, output events produced by the Generator on its “arrive” port, via the output
function, appear as input events on the Clerk’s “arrive” port when the Clerk’s external transition function
is called. The component models and their interconnections constitute a coupled (or network) model. To
create the coupled model depicted above, we create an instance of a Digraph model that has the Generator
and Clerk as components. Shown below is the code snippet that creates this two component model.

13

Figure 3.2: The combined Generator and Clerk model.

int main(int argc, char** argv)

{

...

// Create a digraph model whose components use PortValue<Customer*>

// objects as input and output objects.

adevs::Digraph<Customer*> store;

// Create and add the component models

Clerk* clrk = new Clerk();

Generator* genr = new Generator(argv[1]);

store.add(clrk);

store.add(genr);

// Couple the components

store.couple(genr,genr->arrive,clrk,clrk->arrive);

...

This code snippet first creates the components models and then adds them to the Digraph. Next, the
components are interconnected by coupling the “arrive” output port of the Generator to the “arrive” input
port of the Clerk.

Having created a coupled model to represent the store, all that remains is to perform the simulation.
Here is the code snippet that simulates our model.

...

adevs::Simulator<IO_Type> sim(&store);

while (sim.nextEventTime() < DBL_MAX)

{

sim.execNextEvent();

}

...

Putting this all of this together gives the main routine for the simulation program that generated the
execution traces shown in the example above.

#include "Clerk.h"

#include "Generator.h"

#include "Observer.h"

#include <iostream>

using namespace std;

int main(int argc, char** argv)

{

if (argc != 3)

{

cout << "Need input and output files!" << endl;

return 1;

}

// Create a digraph model whose components use PortValue<Customer*>

// objects as input and output objects.

adevs::Digraph<Customer*> store;

14

// Create and add the component models

Clerk* clrk = new Clerk();

Generator* genr = new Generator(argv[1]);

Observer* obsrv = new Observer(argv[2]);

store.add(clrk);

store.add(genr);

store.add(obsrv);

// Couple the components

store.couple(genr,genr->arrive,clrk,clrk->arrive);

store.couple(clrk,clrk->depart,obsrv,obsrv->departed);

// Create a simulator and run until its done

adevs::Simulator<IO_Type> sim(&store);

while (sim.nextEventTime() < DBL_MAX)

{

sim.execNextEvent();

}

// Done, component models are deleted when the Digraph is

// deleted.

return 0;

}

We have completed our first Adevs simulation program! However, a few details have been glossed over.
The first question - an essential one for a programming language without garbage collection - is what happens
to objects that we create in the Generator and Clerk output functions? The answer is that each model
has a garbage collection method that is called at the end of every simulation cycle (in the example above,
immediately prior to the return of the method execNextEvent()). The argument to the garbage collection
method is the bag of objects created as output in the current simulation cycle. In our store example, the
Clerk and Generator models simply delete the customer pointed to by each PortValue object in the
garbage list. The implementation of the garbage collection method is shown below. This listing is for the
Generator model; the Clerk’s gc output() method is identical.

void Generator::gc_output(Bag<IO_Type>& g)

{

// Delete the customer that was produced as output

Bag<IO_Type>::iterator i;

for (i = g.begin(); i != g.end(); i++)

{

delete (*i).value;

}

}

A second issue that has been overlooked is how to collect the statistics that were our original objective.
One approach is to modify the Clerk so that it writes waiting times to a file as Customers are processed.
While this would work, it has the unfortunate effect of cluttering up the Clerk with code specific to our
experiment.

A better approach is to have an Observer that is coupled to the Clerk’s “depart” output port. The
Observer records the desired statistics as it receives Customers on its “depart” input port. The advantage
of this approach is that we can create new types of clerks to perform the same experiment using, for instance,
different queuing strategies, without changing the experimental setup (i.e., customer generation and data
collection). Similarly, we can change the experiment (i.e., how customers are generated and what data is
collected) without changing the clerk.

Below is the code for the Observer class. This model is driven solely by external events. The observer
reacts to an external event by recording the time that the Customer departed the Clerk’s queue (i.e., the

15

current simulation time) and the amount of time that the Customer waited in line. Here is the Observer
header file.

#include "adevs.h"

#include "Customer.h"

#include <fstream>

/**

* The Observer records performance statistics for a Clerk model

* based on its observable output.

*/

class Observer: public adevs::Atomic<IO_Type>

{

public:

/// Input port for receiving customers that leave the store.

static const int departed;

/// Constructor. Results are written to the specified file.

Observer(const char* results_file);

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Time advance function.

double ta();

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Observer();

private:

/// File for storing information about departing customers.

std::ofstream output_strm;

};

Below is the Observer source file.

#include "Observer.h"

using namespace std;

using namespace adevs;

// Assign a locally unique number to the input port

const int Observer::departed = 0;

Observer::Observer(const char* output_file):

Atomic<IO_Type>(),

output_strm(output_file)

{

// Write a header describing the data fields

output_strm << "# Col 1: Time customer enters the line" << endl;

output_strm << "# Col 2: Time required for customer checkout" << endl;

output_strm << "# Col 3: Time customer leaves the store" << endl;

16

output_strm << "# Col 4: Time spent waiting in line" << endl;

}

double Observer::ta()

{

// The Observer has no autonomous behavior, so its next event

// time is always infinity.

return DBL_MAX;

}

void Observer::delta_int()

{

// The Observer has no autonomous behavior, so do nothing

}

void Observer::delta_ext(double e, const Bag<IO_Type>& xb)

{

// Record the times at which the customer left the line and the

// time spent in it.

Bag<IO_Type>::const_iterator i;

for (i = xb.begin(); i != xb.end(); i++)

{

const Customer* c = (*i).value;

// Compute the time spent waiting in line

double waiting_time = (c->tleave-c->tenter)-c->twait;

// Dump stats to a file

output_strm << c->tenter << " " << c->twait << " " << c->tleave << " " << waiting_time << endl;

}

}

void Observer::delta_conf(const Bag<IO_Type>& xb)

{

// The Observer has no autonomous behavior, so do nothing

}

void Observer::output_func(Bag<IO_Type>& yb)

{

// The Observer produces no output, so do nothing

}

void Observer::gc_output(Bag<IO_Type>& g)

{

// The Observer produces no output, so do nothing

}

Observer::~Observer()

{

// Close the statistics file

output_strm.close();

}

This model is coupled to the Clerk’s “depart” output port in the same manner as before. The resulting

17

Time that the customer leaves the store Time spent waiting in line
2 0
6 0
10 3
12 5
22 5
42 14
44 32
45 33

Table 3.2: Customer departure times and waiting times.

coupled model is illustrated in Figure 3.3; now we have three components instead of just two.

Figure 3.3: The Generator, Clerk, and Observer model.

Given the customer arrival data in Table 3.1, the consequent customer departure and waiting times are
shown in Table 3.2. With this output, we could use a spreadsheet or some other suitable software to find
the maximum and average customer wait times.

Again notice that the customer departure times correspond exactly with the production of customer
departure events by the Clerk model. These departing customers are delivered to the Observer via the
Clerk to Observer coupling shown in Figure 3.3. Each entry in Table 3.2 is the result of executing the
Observer’s external transition function. Also notice that the Observer’s internal and confluent transition
functions will never be executed because the Observer’s ta() method always returns infinity.

This section demonstrated the most common parts of a simulation program built with Adevs. The
remainder of the manual covers Atomic and Network models in greater detail, demonstrates the construc-
tion of variable structure models, and shows how continuous models can be added to your discrete event
simulation.

18

Chapter 4

Atomic Models

Atomic models are the basic building blocks of a DEVS model. The behavior of an atomic model is described
by its state transition functions (internal, external, and confluent), its output function, and its time advance
function. Within Adevs, these aspects of an atomic model are implemented by sub-classing the Atomic
class and implementing its pure virtual methods that correspond to the internal, external, and confluent
transition functions, the output function, and the time advance function.

The state of an atomic model is realized by the attributes of the object that implements the model. The
internal transition function describes the model’s autonomous behavior; that is, how its state evolves in the
absence of input. These types of events are called internal events because they are self-induced; i.e., internal
to the model. The time advance function schedules these autonomous changes of state. The output function
gives the model’s output when these internal events occur.

The external transition function describes how the model changes state in response to input. The
confluent transition function handles the simultaneous occurrence of an internal and external event. The
types of objects that are accepted as input and produced as output are specified with a template argument
to the Atomic base class.

The Clerk described in Section 3 demonstrates all of the aspects of an Atomic model. We’ll use it to
demonstrate how an Atomic model generates output, processes input, and schedules internal events. Here
is the Clerk’s class definition:

include "adevs.h"

#include "Customer.h"

#include <list>

class Clerk: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Clerk();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Time advance function.

double ta();

/// Output value garbage collection.

19

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Clerk();

/// Model input port.

static const int arrive;

/// Model output port.

static const int depart;

private:

/// The clerk’s clock

double t;

/// List of waiting customers.

std::list<Customer*> line;

/// Time spent so far on the customer at the front of the line

double t_spent;

};

and here its implementation

#include "Clerk.h"

#include <iostream>

using namespace std;

using namespace adevs;

// Assign locally unique identifiers to the ports

const int Clerk::arrive = 0;

const int Clerk::depart = 1;

Clerk::Clerk():

Atomic<IO_Type>(), // Initialize the parent Atomic model

t(0.0), // Set the clock to zero

t_spent(0.0) // No time spent on a customer so far

{

}

void Clerk::delta_ext(double e, const Bag<IO_Type>& xb)

{

// Print a notice of the external transition

cout << "Clerk: Computed the external transition function at t = " << t+e << endl;

// Update the clock

t += e;

// Update the time spent on the customer at the front of the line

if (!line.empty())

{

t_spent += e;

}

// Add the new customers to the back of the line.

Bag<IO_Type>::const_iterator i = xb.begin();

for (; i != xb.end(); i++)

{

// Copy the incoming Customer and place it at the back of the line.

line.push_back(new Customer(*((*i).value)));

// Record the time at which the customer entered the line.

20

line.back()->tenter = t;

}

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

void Clerk::delta_int()

{

// Print a notice of the internal transition

cout << "Clerk: Computed the internal transition function at t = " << t+ta() << endl;

// Update the clock

t += ta();

// Reset the spent time

t_spent = 0.0;

// Remove the departing customer from the front of the line.

line.pop_front();

// Summarize the model state

cout << "Clerk: There are " << line.size() << " customers waiting." << endl;

cout << "Clerk: The next customer will leave at t = " << t+ta() << "." << endl;

}

void Clerk::delta_conf(const Bag<IO_Type>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

void Clerk::output_func(Bag<IO_Type>& yb)

{

// Get the departing customer

Customer* leaving = line.front();

// Set the departure time

leaving->tleave = t + ta();

// Eject the customer

IO_Type y(depart,leaving);

yb.insert(y);

// Print a notice of the departure

cout << "Clerk: Computed the output function at t = " << t+ta() << endl;

cout << "Clerk: A customer just departed!" << endl;

}

double Clerk::ta()

{

// If the list is empty, then next event is at inf

if (line.empty()) return DBL_MAX;

// Otherwise, return the time remaining to process the current customer

return line.front()->twait-t_spent;

}

void Clerk::gc_output(Bag<IO_Type>& g)

{

21

Enter checkout line Time to process order
1 1
2 4
3 4
5 2
7 10
8 20
10 2
11 1

Table 4.1: Customer arrival times and times to process customers’ orders.

// Delete the outgoing customer objects

Bag<IO_Type>::iterator i;

for (i = g.begin(); i != g.end(); i++)

{

delete (*i).value;

}

}

Clerk::~Clerk()

{

// Delete anything remaining in the customer queue

list<Customer*>::iterator i;

for (i = line.begin(); i != line.end(); i++)

{

delete *i;

}

}

Consider the simulation of the convenience store described in Section 3 (i.e., with the arrivals listed in
Table 3.1); this arrival data is listed again here:

Table 4.1 describes an input sequence that is fed to the Clerk model. The algorithm for processing this,
or any other, input sequence is listed below. The Atomic model being simulated is called ‘model’, t is the
current simulation time (i.e., the time of the last event - internal, external, or confluent), and t input is the
time of the next unprocessed event in the input sequence.

1. Set the next event time tN to the smaller of the next internal event time t self = t + model.ta() and
the next input event time t input.

2. If t self = tN and t input ¡ tN then produce an output event at time t self by calling model.output func()
and compute the next state by calling model.delta int().

3. If t self = t input = tN then produce an output event at time t self by calling model.output func()
and compute the next state by calling model.delta conf(x) where x contains the input at time t input.

4. If t self ¡ tN and t input = tN then compute the next state by calling model.delta ext(t input-t,x)
where x contains the input at time t input.

5. Set t equal to tN.

6. Repeat if there are more input or internal events to process.

The simulation runs until there are no internal or external events remaining to process. The first step
of the algorithm computes the time of the next event as the sooner of the next input event and the next

22

internal event. If the next internal event happens first, then the model produces an output and its next state
is computed with the internal transition function.

If the next input event happens first, then the next state of the model is computed with the external
transition function; no output is produced in this case. The elapsed time argument given to the external
transition function is the amount of time that has passed since the previous event - internal, external, or
confluent - at that model. If the next input and internal event happen at the same time, then the model
produces an output and its next state is computed with the confluent transition function. The simulation
clock is then advanced to the event time and these steps are repeated.

The output trace resulting from the input sequence in Table 4.1 is shown below. It has been broken up
to show where each simulation cycle begins and ends and the type of event occurring in each cycle.

-External event--

Clerk: Computed the external transition function at t = 1

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 2.

-Confluent event--

Clerk: Computed the output function at t = 2

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 2

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

Clerk: Computed the external transition function at t = 2

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 6.

-External event--

Clerk: Computed the external transition function at t = 3

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 6.

-External event--

Clerk: Computed the external transition function at t = 5

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 6.

-Internal event--

Clerk: Computed the output function at t = 6

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 6

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 10.

-External event--

Clerk: Computed the external transition function at t = 7

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 10.

-External event--

Clerk: Computed the external transition function at t = 8

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 10.

-Confluent event--

Clerk: Computed the output function at t = 10

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 10

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 12.

23

Clerk: Computed the external transition function at t = 10

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 12.

-External event--

Clerk: Computed the external transition function at t = 11

Clerk: There are 5 customers waiting.

Clerk: The next customer will leave at t = 12.

-Internal event--

Clerk: Computed the output function at t = 12

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 12

Clerk: There are 4 customers waiting.

Clerk: The next customer will leave at t = 22.

-Internal event--

Clerk: Computed the output function at t = 22

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 22

Clerk: There are 3 customers waiting.

Clerk: The next customer will leave at t = 42.

-Internal Event--

Clerk: Computed the output function at t = 42

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 42

Clerk: There are 2 customers waiting.

Clerk: The next customer will leave at t = 44.

-Internal event--

Clerk: Computed the output function at t = 44

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 44

Clerk: There are 1 customers waiting.

Clerk: The next customer will leave at t = 45.

-Internal event--

Clerk: Computed the output function at t = 45

Clerk: A customer just departed!

Clerk: Computed the internal transition function at t = 45

Clerk: There are 0 customers waiting.

Clerk: The next customer will leave at t = 1.79769e+308.

Now lets create a more sophisticated clerk model; one that will interrupt the checkout of a customer with
a large order to more quickly serve a customer with a small order. This clerk operates as follows. If while
a customer is being served, another customer arrives whose order can be processed quickly, then the clerk
stops processing the current customer and begins to process the new customer. The clerk, however, does
this only occasionally. To be precise, let a small order be one requiring no more than one unit of time to
process. Moreover, the clerk interrupts processing of an order at most once in every 10 units of time.

This new clerk has two state variables. The first records the time remaining before the clerk is willing to
interrupt the processing of a customer. The second is the list of customers waiting to be served. Here is the
header file for the new clerk model, which we will call Clerk2.

#include "adevs.h"

#include "Customer.h"

#include <list>

class Clerk2: public adevs::Atomic<IO_Type>

24

{

public:

/// Constructor.

Clerk2();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& xb);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& xb);

/// Time advance function.

double ta();

/// Output function.

void output_func(adevs::Bag<IO_Type>& yb);

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Clerk2();

/// Model input port.

static const int arrive;

/// Model output port.

static const int depart;

private:

/// Structure for storing information about customers in the line

struct customer_info_t

{

// The customer

Customer* customer;

// Time remaining to process the customer order

double t_left;

};

/// List of waiting customers.

std::list<customer_info_t> line;

//// Time before we can preempt another customer

double preempt;

/// The clerk’s clock

double t;

/// Threshold correspond to a ’small’ order processing time

static const double SMALL_ORDER;

/// Minimum time between preemptions.

static const double PREEMPT_TIME;

};

The Clerk2 constructor sets the clerk’s clock and interruption timers to zero.

Clerk2::Clerk2():

Atomic<IO_Type>(),

preempt(0.0),

t(0.0)

{

}

The output function of the Clerk2 model sets the exit time of the departing customer and then ejects that
customer via the “depart” port.

25

void Clerk2::output_func(Bag<IO_Type>& yb)

{

/// Set the exit time of the departing customer

line.front().customer->tleave = t+ta();

/// Place the customer at the front of the line onto the depart port.

IO_Type y(depart,line.front().customer);

yb.insert(y);

// Report the departure

cout << "Clerk: A customer departed at t = " << t+ta() << endl;

}

The Clerk2’s external transition function works as follows. When a new customer arrives, the clerk
first advanced its clock by the elapsed time. Next, she reduces the time remaining to process the current
customer. This reduction reflects the amount of time that has already been spent on the customer’s order,
which is the time elapsed since the clerk’s last change of state. Then the clerk decrements the time remaining
before she is willing to interrupt the processing of a large order; this timer is also decremented by the elapsed
time.

Now the clerk records the time at which each arriving customer enters the line; this time is the value of
the clock. If any of the arriving customers has a small checkout time and the clerk is willing to interrupt
the present order, then that customer with the small order goes to the front of the line. This preempts the
current customer, who now has the second place in line, and causes the preempt timer to be reset. Otherwise,
the new customer simply goes to the back of the line.

void Clerk2::delta_ext(double e, const Bag<IO_Type>& xb)

{

/// Update the clock

t += e;

/// Update the time spent working on the current order

if (!line.empty())

{

line.front().t_left -= e;

}

/// Reduce the preempt time

preempt -= e;

/// Place new customers into the line

Bag<IO_Type>::const_iterator iter = xb.begin();

for (; iter != xb.end(); iter++)

{

cout << "Clerk: A new customer arrived at t = " << t << endl;

/// Create a copy of the incoming customer and set the entry time

customer_info_t c;

c.customer = new Customer(*((*iter).value));

c.t_left = c.customer->twait;

/// Record the time at which the customer enters the line

c.customer->tenter = t;

/// If the customer has a small order

if (preempt <= 0.0 && c.t_left <= SMALL_ORDER)

{

cout << "Clerk: The new customer has preempted the current one!" << endl;

/// We won’t preempt another customer for at least this long

preempt = PREEMPT_TIME;

/// Put the new customer at the front of the line

line.push_front(c);

26

}

/// otherwise just put the customer at the end of the line

else

{

cout << "Clerk: The new customer is at the back of the line" << endl;

line.push_back(c);

}

}

}

The internal transition function is similar to the external transition function. It begins by decrementing
the time remaining before the clerk will interrupt an order. The customer that just departed the store via
the output function is then removed from the front of the line. If the line is empty, then there is nothing to
do and the clerk sits idly behind her counter. If the line is not empty and the preemption time has expired
then the clerk scans the line for the first customer with a small order. If such a customer can be found, that
customer moves to the front of the line. Then the clerk starts ringing up the first customer in her line. Here
is the internal transition function for the Clerk2 model.

void Clerk2::delta_int()

{

// Update the clerk’s clock

t += ta();

// Update the preemption timer

preempt -= ta();

// Remove the departing customer from the front of the line.

// The departing customer will be deleted later by our garbage

// collection method.

line.pop_front();

// Check to see if any customers are waiting.

if (line.empty())

{

cout << "Clerk: The line is empty at t = " << t << endl;

return;

}

// If the preemption time has passed, then look for a small

// order that can be promoted to the front of the line.

list<customer_info_t>::iterator i;

for (i = line.begin(); i != line.end() && preempt <= 0.0; i++)

{

if ((*i).t_left <= SMALL_ORDER)

{

cout << "Clerk: A queued customer has a small order at time " << t << endl;

customer_info_t small_order = *i;

line.erase(i);

line.push_front(small_order);

preempt = PREEMPT_TIME;

break;

}

}

}

The time advance function returns the time remaining to process the customer at the front of the line,
or infinity (i.e., DBL MAX) if there are no customers to process.

27

double Clerk2::ta()

{

// If the line is empty, then there is nothing to do

if (line.empty()) return DBL_MAX;

// Otherwise, wait until the first customer will leave

else return line.front().t_left;

}

The last function to implement is the confluent transition function. The Clerk2 model has the same
confluent transition as the Clerk that is described in section 3:

void Clerk2::delta_conf(const Bag<IO_Type>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

The behavior of the Clerk2 model is more complex than that of the Clerk model. To exercise the
Clerk2, we replace the Clerk model in the example from section 3 with the Clerk2 model and perform the
same experiment. Here is the output trace for the Clerk2 model in response to the input sequence shown
in Table 4.1. This trace was generated by the print statements shown in the source code listings for the
Clerk2 model.

Clerk: A new customer arrived at t = 1

Clerk: The new customer has preempted the current one!

Clerk: A customer departed at t = 2

Clerk: The line is empty at t = 2

Clerk: A new customer arrived at t = 2

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 3

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 5

Clerk: The new customer is at the back of the line

Clerk: A customer departed at t = 6

Clerk: A new customer arrived at t = 7

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 8

Clerk: The new customer is at the back of the line

Clerk: A customer departed at t = 10

Clerk: A new customer arrived at t = 10

Clerk: The new customer is at the back of the line

Clerk: A new customer arrived at t = 11

Clerk: The new customer has preempted the current one!

Clerk: A customer departed at t = 12

Clerk: A customer departed at t = 13

Clerk: A customer departed at t = 23

Clerk: A customer departed at t = 43

Clerk: A customer departed at t = 45

Clerk: The line is empty at t = 45

The evolution of the Clerk2 line is depicted in Fig. 4.1. To time 11 the line evolves just as it did with
the Clerk model. At time 11 the Clerk2 changes the course of the simulation by moving a customer with
a small order to the front of the line.

28

Figure 4.1: The evolution of the Clerk2 line in response to the customer arrival sequence listed in Table
4.1.

29

30

Chapter 5

Network Models

A network model comprises atomic models and other network models that are interconnected. Network
models can be components of other network models, thereby enabling the construction of very large, multi-
level systems. Unlike atomic models, network models do not directly define new dynamic behavior. The
dynamics of a network model are determined by the dynamics of its component parts and their interactions.
Atomic models define fundamental behaviors; network models define structure.

5.1 Parts of a Network Model

Network models are derived from the abstract Network class. This class has two virtual methods: route
and getComponents. The route method implements connections between the components of the Network
model and between those components and the inputs and outputs of the network itself. The getComponents
method provides the set of components that constitute the network.

The route method is the primary workhorse of a Network model. It realizes three types of connections.
The first are connections between components of the network. The second are connections from the network’s
inputs to the inputs of its component models. The third are connections from the components’ outputs to
the outputs of the network.

The signature of the route method is

void route(const X& value, Devs<X>* model, Bag<Event<X> >& r)

for which the value argument is the object being routed, the model argument is the Network or Atomic
model that originated the event (i.e., the event’s source), and the r argument is a bag to be filled with the
targets of the event. Each target is described by an Event object that carries to pieces of information: a
pointer to the model that is the event’s target and the object to be delivered to that target.

The simulator uses these Event objects in one of three ways, which depending on the relationship between
the source of the event and its target. These uses are

1. If the event’s source is a component of the network and the target is the network itself, then the event’s
value becomes an output from the network.

2. If the event’s source is the network and the event’s target is a component of the network, then the
event’s value becomes an input to that component.

3. If the event’s source and target are both components of the network, then the event’s value becomes
an input to the target.

Any other relationship between the source and the target is illegal and will cause the simulator to raise an
exception.

31

The simplest example of how the route method is used converts output from one Atomic component of
a Network into input for another Atomic component of the same Network. Figure 5.1 illustrates this
case.

Figure 5.1: Two connected Atomic components in a single Network.

The simulator begins by invoking the output func method of Atomic model A. Next, the simulator
iterates through the elements of A’s output bag and calls the Network’s route method for each one. The
arguments passed to route at each call are

1. the output object itself, which becomes the value argument,

2. a pointer to A, which is the model argument, and

3. an empty Bag for holding Event objects.

Two things are done by the route method to cause Atomic model B to receive the output object from A.
First, an Event object is created that contains the output object and a pointer to B. Second, this Event
object is inserted into the Bag r of receivers of the event. If we suppose, for the sake of illustration, that
input and output objects have type int, then the route method for this example is

void route(const int& value, Devs<int>* model, Bag<Event<int> >& r) {

if (model == A) {

Event<int> e(B,value);

r.insert(e);

}

}

where A and B are pointers to the respective components. This route method implements the network
shown in Fig. 5.1.

A more complicated example is the network itself receiving input ultimately destined for one of its atomic
components. This can happen, for instance, when the network is a component of another network. Suppose
that input to our example network is to become input for Atomic model A. Figure 5.2 extends Fig. 5.1 to
include this connection.

Figure 5.2: Two connected Atomic components with external input coupling to component A.

32

When an event appears at the input of the network, the simulator calls the Network’s route method
with the following arguments:

1. the input object itself, which becomes the value argument,

2. a pointer to the Network that is receiving the event, and

3. an empty Bag for holding Event objects.

As before, the route creates an Event object that indicates the receiving model and the value of the event.
This Event object is put into the Bag r of receivers. The code below implements the network shown in Fig.
5.2; note that the this pointer points to the Network itself (i.e., to the network that is receiving the input
initially).

void route(const int& value, Devs<int>* model, Bag<Event<int> >& r) {

if (model == A) {

Event<int> e(B,value);

r.insert(e);

}

else if (model == this) {

Event<int> e(A,value);

r.insert(e);

}

}

Figure 5.3: A two component network model with external input, external output, and internal coupling.

For a complete example, the network is extended again, as shown in Fig. 5.2, to include two more
connections: a connection from the output of model B to the output of the network and a feedback connection
from B to A. This configuration is shown in Fig. 5.3. This new connection requires an additional case in
the route method. This case checks for output from B and, if such an output is found, directs it to both
A and the network itself. A Event object is created for each target and added to the Bag r of receivers:
one of these Events results in an input to A and the other in an output from the network. Here is the
implementation.

void route(const int& value, Devs<int>* model, Bag<Event<int> >& r) {

if (model == A) {

Event<int> e(B,value);

r.insert(e);

}

else if (model == this) {

Event<int> e(A,value);

r.insert(e);

}

else if (model == B) {

33

Event<int> e1(this,value);

Event<int> e2(A,value);

r.insert(e1);

r.insert(e2);

}

}

The getComponents method is the other virtual method that must be implemented by a Network.
The simulator passes to this method an empty Set of pointers to models, and this must be filled with the
network’s components. The signature of the getComponents method is

void getComponents(Set<Devs<X>*>& c)

where c is the set to be filled. There isn’t much else to say about this method. The code below shows how
it is implemented for the two component network shown in Fig. 5.3; this code, of course, also works for the
networks shown in Figs. 5.2 and 5.1.

void getComponents(Set<Devs<int>*>& c) {

c.insert(A);

c.insert(B);

}

There are just three other items to mention in relation to Network models. First, components cannot be
connected to themselves. This means that direct feedback loops and connections direct through a network
model are illegal. The former can always be replaced with an internal event an the latter by simply bypassing
the network (which won’t do anything with the input in any event). These two cases are illustrated in Fig.
5.4. Second, direct coupling can only occur between components belonging to the same network, and every
component must belong to, at most, one network. Third, the route method is allowed to modify an output
before sending it along; this can be useful in some cases.

Figure 5.4: Illegal coupling in a Network model.

5.2 Simulating a Network Model

Each iteration of the simulator has four phases: 1) advance the simulation clock to the time of the next
event, 2) compute the outputs from atomic models that will change state (i.e., how will undergo an internal
or confluent event) and convert these outputs into inputs for other models, 3) calculate the next state of
each model with events to process, and 4) cleanup garbage left over from the output calculations. These
four phase are repeated until the time of the next event is at infinity (i.e., DBL MAX) or you decide to stop
the simulation.

Conveniently, there are no special rules for simulating networks of network models. The simulator
considers the entire collection of atomic models when determining the next event time; output from atomic

34

models are recursively routed to their atomic destinations; and the state transitions and garbage collection
are performed over the complete set of active atomic components. Hierarchies of network models are a
convenient organizing tool for the modeler, but the simulator treats (via its recursive routing of events) the
multi-level network as a flat structure.

Algorithm 1 sketches the simulation procedure. Note that the procedure for simulating atomic models
(see section 4) is embedded in the procedure for simulating network models. The rules for atomic models
do not change in any way; each atomic model sees a sequence of input events and produces a sequence of
output events just as before. The only difference here is that the input events are created by other atomic
models, and so the input sequence for each atomic model is constructed as the simulation progresses.

Algorithm 1 The simulation procedure for a network model.

Initialize the state of every Atomic model
Set the time of last event tl,i of every Atomic model i to 0
Set the simulation time t to 0
while The smallest time of next event for the Atomic models is less than DBL MAX do

Set t to the smallest time of next event for the Atomic models
Find the set of Atomic models whose next event time is equal to t. These are the imminent models.
Get the output of each imminent model by calling its output func
Convert output from imminent models to input for other models using the Network models route
methods (do this recursively if the network has more than one level)
for each Atomic model i that is imminent or has input do

if i is an imminent model and it does not have input then
Compute the next model state with delta int()

else if i is an imminent and it has input then
Compute the next model state with delta conf(xb), where xb is the model input

else if i is not an imminent model and it has input then
Compute the next model state with delta ext(t − tl,i,xb), where xb is the model input

end if
Set tl,i to t

end for
end while

5.3 A complete example of a network model

I’ll use the Adevs SimpleDigraph class to illustrate the process of building a network model. The Sim-
pleDigraph models a network of components whose connections are represented with a directed graph. If,
for example, component A is connected to component B, then all output events generated by A become
input events to B.

The SimpleDigraph has two methods for building a network. The add method takes an Atomic or
Network model and adds it to the set of components. The couple method accepts a pair of components
and connects the first to the second. Below is the class definition for the model; note that is has a template
parameter for setting its input and output type. The Network, Devs, Bag, and Set are in the adevs
namespace, and adevs:: must precede them unless the SimpleDigraph is itself in the adevs namespace
(which, in this case, it is).

template <class VALUE> class SimpleDigraph: public Network<VALUE> {

public:

/// A component of the SimpleDigraph model

typedef Devs<VALUE> Component;

/// Construct a network with no components

35

SimpleDigraph():Network<VALUE>(){}

/// Add a model to the network.

void add(Component* model);

/// Couple the source model to the destination model

void couple(Component* src, Component* dst);

/// Assigns the model component set to c

void getComponents(Set<Component*>& c);

/// Use the coupling information to route an event

void route(const VALUE& x, Component* model, Bag<Event<VALUE> >& r);

/// The destructor destroys all of the component models

~SimpleDigraph();

private:

// Component model set

Set<Component*> models;

// Coupling information

std::map<Component*,Bag<Component*> > graph;

};

The SimpleDigraph has two member variables. The first is a set of pointers to the components of the
network; these are stored in the Set models. The components can be Atomic objects, Network objects, or
both. The SimpleDigraph components are the nodes of the directed graph. The second member variable
is a STL map that contains the network’s links, or edges; these are stored in the map graph.

The SimpleGraph has four methods beyond the required route and getComponents. One of these is the
constructor, which creates an empty network. The other is the destructor, which deletes all of the network’s
components. The others are add and couple.

The add method does three things. First, it checks that the network is not being added to itself; this is
illegal and would cause no end of trouble for the simulator. Next, it adds the new component to its set of
components. Last, the SimpleNetwork sets the component’s parent. The last step is needed so that the
simulator can climb up and down the model tree. If it is omitted then the routing of events is likely fail.
Here is the implementation of the add method.

template <class VALUE>

void SimpleDigraph<VALUE>::add(Component* model) {

assert(model != this);

models.insert(model);

model->setParent(this);

}

The couple method does two things, but one of them is somewhat superfluous. First, it adds the source
(src) and destination (dst) models to the set of components. We could simply have required that the user call
the add method before using the couple method, but adding the components here doesn’t hurt and might
prevent an error. The second step is essential; the method adds the src → dst link to the graph. Notice that
the SimpleDigraph itself is a node in the network (but it is not in the set of components!): components
that are connected to the network cause network outputs. Similarly, connecting the network to a component
cause input to the network to become input to that component. Here is the implementation of the couple
method.

template <class VALUE>

void SimpleDigraph<VALUE>::couple(Component* src, Component* dst) {

if (src != this) add(src);

if (dst != this) add(dst);

graph[src].insert(dst);

}

36

Of the two required methods, route is the more complicated. The arguments to route are an object that
is the value to be routed, the network element (i.e., either the SimpleDigraph or one of its components)
that created that object, and the Bag to be filled with Event objects that indicate the object’s receivers.
The method begins by finding the collection of components that are connected to the source of the event.
Next, it iterates through this collection and for each receiver adds an Event to the Bag of receivers. When
this is done the method returns. The implementation is below.

template <class VALUE>

void SimpleDigraph<VALUE>::route(const VALUE& x, Component* model,Bag<Event<VALUE> >& r) {

// Find the list of target models and ports

typename std::map<Component*,Bag<Component*> >::iterator graph_iter;

graph_iter = graph.find(model);

// If no target, just return

if (graph_iter == graph.end()) return;

// Otherwise, add the targets to the event bag

Event<VALUE> event;

typename Bag<Component*>::iterator node_iter;

for (node_iter = (*graph_iter).second.begin();

node_iter != (*graph_iter).second.end(); node_iter++) {

event.model = *node_iter;

event.value = x;

r.insert(event);

}

}

The second required method, getComponents, is trivial. If we had used some collection other than an
Adevs Set to store the components, then the method would have needed to explicitly insert every component
model into the Set c. But because the sets models and c are both Set objects, and the Set has an assignment
operator, a simple call to that operator is sufficient.

template <class VALUE>

void SimpleDigraph<VALUE>::getComponents(Set<Component*>& c) {

c = models;

}

The constructor and the destructor complete the class. The constructor implementation appears in the
class definition; it only calls the superclass constructor. The destructor deletes the component models. Its
implementation is shown below.

template <class VALUE>

SimpleDigraph<VALUE>::~SimpleDigraph() {

typename Set<Component*>::iterator i;

for (i = models.begin(); i != models.end(); i++) {

delete *i;

}

}

5.4 Digraph Models

This section introduces the Digraph model, which is part of the Adevs simulation library. The Digraph is
a tool for building network models based on, or described by, a block diagram. The model of the convenience
store, developed in section 3, was our first example of a Digraph model. The code used to construct the
convenience store model (without the Observer) is shown below. The block diagram that corresponds to
this code snippet is shown in Fig. 5.5.

37

// Create a digraph model whose components use PortValue<Customer*>

// objects as input and output objects.

adevs::Digraph<Customer*> store;

// Create and add the component models

Clerk* clrk = new Clerk();

Generator* genr = new Generator(argv[1]);

store.add(clrk);

store.add(genr);

// Couple the components

store.couple(genr,genr->arrive,clrk,clrk->arrive);

Figure 5.5: A Digraph model with two components.

The components of a Digraph must use adevs::PortValue objects for their input and output type.
The Digraph is a template class with two template parameters. The first parameter is the type of object
used for a value in the PortValue objects. The second parameter is the type of object used for a port in
the PortValue objects. The port parameter is of type ’int’ by default.

For the modeler, the Digraph has two primary methods. The add method is used to add components to
the network; the argument to the add method is just the model to be included in the network. The couple
method is used to connect components of the network. The first two arguments to the couple method are
the source model and source port. The second two arguments are the destination model and the destination
port.

The effect of coupling a source model to a destination model is that output produced by the source model
on the source port appears as input to the destination model on the destination port. To illustrate this,
consider the output function of the Generator model that is shown in Fig. 5.5.

void Generator::output_func(Bag<IO_Type>& yb)

{

// First customer in the list is produced as output

IO_Type output(arrive,arrivals.front());

yb.insert(output);

}

This output function places an output value of type ‘Customer*’ on the “arrive” output port of the
Generator; recall that ’IO Type’ is a typedef for ‘PortValue¡Customer*¿’. A corresponding PortValue
object appears in the input bag of the Clerk. The value attribute of the PortValue object received by the
clerk points to the Customer object created by the Generator, and the port is the Clerk’s “arrive” port.

The components for the network need not consist only of Atomic models; the Digraph can also have
other Network models as its components. For instance, suppose that we want to model a convenience store
that has two clerks. When customers are ready to pay their bill, they enter the shortest line. To build this
model, we reuse the Clerk, Generator, and Observer models that were introduced in section 3, and add
an additional model for the process of customers selecting a checkout line.

The header and source code for the model of the line-selection process is shown below. This model has
two output ports, one for each line, and there are three input ports. One input port accepts new customers.
The others are used to track the number of number of customers departing each line: a customer departing
either clerk generates an event on the appropriate input port. In this way, the model is able to track the

38

number of customers in each line and assign new customers to the shortest one. With this information, the
state transition and output functions are (I hope) self explanatory. Here is the class definition

#include "adevs.h"

#include "Customer.h"

#include <list>

// Number of lines to consider.

#define NUM_LINES 2

class Decision: public adevs::Atomic<IO_Type>

{

public:

/// Constructor.

Decision();

/// Internal transition function.

void delta_int();

/// External transition function.

void delta_ext(double e, const adevs::Bag<IO_Type>& x);

/// Confluent transition function.

void delta_conf(const adevs::Bag<IO_Type>& x);

/// Output function.

void output_func(adevs::Bag<IO_Type>& y);

/// Time advance function.

double ta();

/// Output value garbage collection.

void gc_output(adevs::Bag<IO_Type>& g);

/// Destructor.

~Decision();

/// Input port that receives new customers

static const int decide;

/// Input ports that receive customers leaving the two lines

static const int departures[NUM_LINES];

/// Output ports that produce customers for the two lines

static const int arrive[NUM_LINES];

private:

/// Lengths of the two lines

int line_length[NUM_LINES];

/// List of deciding customers and their decision.

std::list<std::pair<int,Customer*> > deciding;

/// Delete all waiting customers and clear the list.

void clear_deciders();

/// Returns the arrive port associated with the shortest line

int find_shortest_line();

};

and here is the implementation

#include "Decision.h"

#include <iostream>

using namespace std;

using namespace adevs;

39

// Assign identifiers to ports. Assumes NUM_LINES = 2.

// The numbers are selected to allow indexing into the

// line length and port number arrays.

const int Decision::departures[NUM_LINES] = { 0, 1 };

const int Decision::arrive[NUM_LINES] = { 0, 1 };

// Inport port for arriving customer that need to make a decision

const int Decision::decide = NUM_LINES;

Decision::Decision():

Atomic<IO_Type>()

{

// Set the initial line lengths to zero

for (int i = 0; i < NUM_LINES; i++)

{

line_length[i] = 0;

}

}

void Decision::delta_int()

{

// Move out all of the deciders

deciding.clear();

}

void Decision::delta_ext(double e, const Bag<IO_Type>& x)

{

// Assign new arrivals to a line and update the line length

Bag<IO_Type>::const_iterator iter = x.begin();

for (; iter != x.end(); iter++)

{

if ((*iter).port == decide)

{

int line_choice = find_shortest_line();

Customer* customer = new Customer(*((*iter).value));

pair<int,Customer*> p(line_choice,customer);

deciding.push_back(p);

line_length[p.first]++;

}

}

// Decrement the length of lines that had customers leave

for (int i = 0; i < NUM_LINES; i++)

{

iter = x.begin();

for (; iter != x.end(); iter++)

{

if ((*iter).port < NUM_LINES)

{

line_length[(*iter).port]--;

}

}

}

40

}

void Decision::delta_conf(const Bag<IO_Type>& x)

{

delta_int();

delta_ext(0.0,x);

}

double Decision::ta()

{

// If there are customers getting into line, then produce output

// immediately.

if (!deciding.empty())

{

return 0.0;

}

// Otherwise, wait for another customer

else

{

return DBL_MAX;

}

}

void Decision::output_func(Bag<IO_Type>& y)

{

// Send all customers to their lines

list<pair<int,Customer*> >::iterator i = deciding.begin();

for (; i != deciding.end(); i++)

{

IO_Type event((*i).first,(*i).second);

y.insert(event);

}

}

void Decision::gc_output(Bag<IO_Type>& g)

{

Bag<IO_Type>::iterator iter = g.begin();

for (; iter != g.end(); iter++)

{

delete (*iter).value;

}

}

Decision::~Decision()

{

clear_deciders();

}

void Decision::clear_deciders()

{

list<pair<int,Customer*> >::iterator i = deciding.begin();

for (; i != deciding.end(); i++)

41

{

delete (*i).second;

}

deciding.clear();

}

int Decision::find_shortest_line()

{

int shortest = 0;

for (int i = 0; i < NUM_LINES; i++)

{

if (line_length[shortest] > line_length[i])

{

shortest = i;

}

}

return shortest;

}

The block diagram of the store with multiple clerks is shown in Fig. 5.6. The external interface for this
block diagram model is identical to that of the clerk models (i.e., it has the same inputs and outputs as
the Clerk and Clerk2 models), and we can therefore use the generator and observer models to conduct
the same experiments as before. The external “arrive” input of the multi-clerk model is connected to the
“decide” input of the Decision model. The “depart” output ports of each of the Clerk models is connected
to the external “arrive” output port of the multi-clerk model. The Decision model has two output ports,
each one producing customers for a distinct clerk. These output ports are coupled to the “arrive” port of
the appropriate clerk. The Clerk’s “depart” output ports are then coupled to the appropriate “departures”
port of the decision model.

Figure 5.6: Component models and their interconnections in the multi-clerk convenience store model.

The multi-clerk model is implemented by deriving a new class from Digraph. The constructor of the
new class creates and adds the component models and establishes their interconnections. Here is the header
file for this new multi-clerk model.

#include "adevs.h"

#include "Clerk.h"

#include "Decision.h"

/**

A model of a store with multiple clerks and a "shortest line"

decision process for customers.

*/

42

class MultiClerk: public adevs::Digraph<Customer*>

{

public:

// Model input port

static const int arrive;

// Model output port

static const int depart;

// Constructor.

MultiClerk();

// Destructor.

~MultiClerk();

};

And here is the source file

#include "MultiClerk.h"

using namespace std;

using namespace adevs;

// Assign identifiers to I/O ports

const int MultiClerk::arrive = 0;

const int MultiClerk::depart = 1;

MultiClerk::MultiClerk():

Digraph<Customer*>()

{

// Create and add component models

Decision* d = new Decision();

add(d);

Clerk* c[NUM_LINES];

for (int i = 0; i < NUM_LINES; i++)

{

c[i] = new Clerk();

add(c[i]);

}

// Create model connections

couple(this,this->arrive,d,d->decide);

for (int i = 0; i < NUM_LINES; i++)

{

couple(d,d->arrive[i],c[i],c[i]->arrive);

couple(c[i],c[i]->depart,d,d->departures[i]);

couple(c[i],c[i]->depart,this,this->depart);

}

}

MultiClerk::~MultiClerk()

{

}

Notice that the MultiClerk destructor does not delete its component models. This is because the compo-
nents are adopted by the base class when they are added using the Digraph’s add method. Consequently,
the component models are deleted by the base class destructor, rather than the destructor of the derived
class.

43

5.5 Cell Space Models

A cell space model is a collection of atomic and network models arrange in a regular grid and with each
model connected to its neighboring models. Conway’s Game of Life is a classic example of a cell space model
that can be described very nicely as a discrete event system. The game is played on a flat board divided
into regular cells much like a checkerboard. Each cell has a neighborhood that consists of its eight adjacent
cells: above, below, left, right, and the four corners. A cell can be dead or alive, and the switch from dead
to alive and vice versa occurs according to two rules:

1. (Death rule). If a cell is alive and it has less than two or more than three living neighbors then the
cell dies.

2. (Rebirth rule). If a cell is dead and it has three three living neighbors then the cell is reborn.

Our implementation of the Game of Life has two parts: the atomic models that implement the individual
cells and the CellSpace that contains the cells. The CellSpace is a type of Network, and its components
exchange CellEvent objects that have four attributes: the x, y, and z coordinates of the target cell (the cell
space can have three dimensions; the game of life uses just two) and the object to deliver to that target. The
CellEvent class is a template class whose template argument sets the type of object that the event delivers.
The size of the CellSpace is determined when the CellSpace object is created, and it has methods for
adding and retrieving cells by location.

The Atomic cells in our Game of Life have two state variables: one is the dead or alive status of the cell
and the other is its count of living neighbors. Two methods are implemented to test the death and rebirth
rules, and the cell sets its time advance to 1 whenever a rule is satisfied. The cell’s output is its new dead
or alive state. External events update the cell’s count of living neighbors. In order to produce properly
targeted CellEvents, each cell also keeps track of its own location in the cell space. In the example code,
the cell space is rendered graphically using OpenGL, but I’ll omit that part. Here is the abbreviated header
file for our Game of Life cell.

/// Possible cell phases

typedef enum { Dead, Alive } Phase;

/// IO type for a cell

typedef adevs::CellEvent<Phase> CellEvent;

/// A cell in the Game of Life.

class Cell: public adevs::Atomic<CellEvent> {

public:

/**

Create a cell and set the initial state.

The width and height fields are used to determine if a

cell is an edge cell. The last phase pointer is used to

visualize the cell space.

*/

Cell(long int x, long int y, long int width, long int height,

Phase phase, short int nalive, Phase* vis_phase = NULL);

... Required Adevs methods and destructor ...

private:

// location of the cell in the 2D space

long int x, y;

// dimensions of the 2D space

static long int w, h;

// Current cell phase

44

Phase phase;

// number of living neighbors.

short int nalive;

// Output variable for visualization

Phase* vis_phase;

// Returns true if the cell will be born

bool check_born_rule() const {

return (phase == Dead && nalive == 3);

}

// Return true if the cell will die

bool check_death_rule() const {

return (phase == Alive && (nalive < 2 || nalive > 3));

}

};

The template argument supplied to the base Atomic class is a CellEvent whose value attribute has the
type Phase. The check born rule method tests the rebirth condition and the check death rule method tests
the death condition. The appropriate rule, as determined by the cell’s dead or alive status, is used in the
time advance, output, and internal transition methods (i.e., if the cell is dead then check the rebirth rule;
if alive, check the death rule). The number of living cells is updated by the cell’s delta ext method when
neighboring cells report a change in their status. Here are the Cell’s method implementations.

Cell::Cell(long int x, long int y, long int w, long int h,

Phase phase, short int nalive, Phase* vis_phase):

adevs::Atomic<CellEvent>(),x(x),y(y),phase(phase),nalive(nalive),vis_phase(vis_phase) {

// Set the global cellspace dimensions

Cell::w = w; Cell::h = h;

// Set the initial visualization value

if (vis_phase != NULL) *vis_phase = phase;

}

double Cell::ta() {

// If a phase change should occur then change state

if (check_death_rule() || check_born_rule()) return 1.0;

// Otherwise, do nothing

return DBL_MAX;

}

void Cell::delta_int() {

// Change the cell state if necessary

if (check_death_rule()) phase = Dead;

else if (check_born_rule()) phase = Alive;

}

void Cell::delta_ext(double e, const adevs::Bag<CellEvent>& xb) {

// Update the living neighbor count

adevs::Bag<CellEvent>::const_iterator iter;

for (iter = xb.begin(); iter != xb.end(); iter++) {

if ((*iter).value == Dead) nalive--;

else nalive++;

}

}

45

void Cell::delta_conf(const adevs::Bag<CellEvent>& xb) {

delta_int();

delta_ext(0.0,xb);

}

void Cell::output_func(adevs::Bag<CellEvent>& yb) {

CellEvent e;

// Assume we are dying

e.value = Dead;

// Check in case this in not true

if (check_born_rule()) e.value = Alive;

// Set the visualization value

if (vis_phase != NULL) *vis_phase = e.value;

// Generate an event for each neighbor

for (long int dx = -1; dx <= 1; dx++) {

for (long int dy = -1; dy <= 1; dy++) {

e.x = (x+dx)%w;

e.y = (y+dy)%h;

if (e.x < 0) e.x = w-1;

if (e.y < 0) e.y = h-1;

// Don’t send to self

if (e.x != x || e.y != y)

yb.insert(e);

}

}

}

The output func method shows how a cell sends messages to its neighbors. The double for loop creates
a CellEvent targeted at each adjacent cell. The location of the target cell is written to the x, y, and z
attributes of the CellEvent object. Just like arrays, the locations can range from zero to the cell space’s size
minus one. The CellSpace routes the CellEvents to their targets. However, if the target of the CellEvent
is outside of the cell space, then the CellSpace itself will produce the CellEvent as an output.

The remainder of the simulation program looks very much like the simulation programs that we’ve seen
so far (except for some OpenGL specific code, omitted here, that is used to display the cells). A CellSpace
object is created and we add the cells to it. Then a Simulator object is create and a pointer to the
CellSpace is passed to the Simulator’s constructor. Last, we execute events until our stopping criteria is
met. The execution part is already familiar, so let’s just focus on creating the CellSpace. Here is the code
snippet that performs the construction.

// Create the cellspace model

cell_space = new adevs::CellSpace<Phase>(WIDTH,HEIGHT);

for (int x = 0; x < WIDTH; x++) {

for (int y = 0; y < HEIGHT; y++) {

// Count the living neighbors

short int nalive = count_living_cells(x,y);

// The 2D phase array contains the initial Dead/Alive state of each cell

cell_space->add(new Cell(x,y,WIDTH,HEIGHT,phase[x][y],nalive,&(phase[x][y])),x,y);

}

}

Just as with the Digraph class, the CellSpace template argument determines the value type for the
CellEvents used as input and output by the component models. The CellSpace constructor sets the

46

dimensions of the space. Every CellSpace is three dimensional, and the constructor accepts three arguments
that set its x, y, and z dimensions; omitted arguments default to 1. The constructor signature is

CellSpace(long int width, long int height = 1, long int depth = 1)

Components are added to the cellspace with the add method. This method places a component at a
specific x,y,z location. Its signature is

void add(Cell* model, long int x, long int y = 0, long int z = 0)

where Cell is a Devs (atomic or network) by the type definition

typedef Devs<CellEvent<X> > Cell;

Also like the Digraph, the CellSpace deletes its components when it is deleted.
The CellSpace has five other methods for retrieving cells and for getting the dimensionality of the cell

space. These are more or less self-explanatory; the signatures are shown below.

const Cell* getModel(long int x, long int y = 0, long int z = 0) const;

Cell* getModel(long int x, long int y = 0, long int z = 0);

long int getWidth() const;

long int getHeight() const;

long int getDepth() const;

The Game of Life produces a surprising number of clearly recognizable patterns. Some of these patterns
are fixed and unchanging; others oscillate, cycling through a set of patterns that always repeats itself; others
seem to crawl or fly. One common pattern is the Block, which is shown in Fig. 5.7. Our discrete event
implementation of the Game of Life doesn’t do any work when simulating a Block. None of the cells in a
Block change in any way: their phases are constant and so are their neighbor counts. The Blinker shown in

Figure 5.7: The Block.

Fig. 5.8 is more interesting. This oscillating pattern has just two stages: a vertical and a horizontal. Table
5.1 shows the input, output, and state transitions that are computed for the cell marked with a * in Fig.
5.8. Just like the pattern it is a part of, the cells oscillates between two different states.

Time State Input Output to all neighbors
0 (dead,3) No input No Output
1 (alive,1) (dead,2,1,0) (dead,2,3,0) alive
2 (dead,1) (alive,2,1,0) (alive,2,3,0) dead

Table 5.1: State, input, and output trajectory for the cell marked with * in Fig. 5.8.

The confluent transition function plays a major role in the Blinker simulation. Most of the rows in Table
5.1 (all but the first row, in fact) have simultaneous input and output, which means that an internal and
external event coincide. Consequently, the next state of the cell is determined by its delta conf method.
It is also important that the input and output bags carry multiple values. The external transition function

47

Figure 5.8: The Blinker. The input, output, and state transitions for the cell marked with a * are shown in
Table 5.1. The address of each cell is shown in its upper left corner. Living cells are indicated with a $.

(which is used in defining the confluent transition function) must be able to compute the number of living
neighbors before determining its next state. If input events were provided one at a time (e.g., if the input bag
were replaced by a single input event), then our discrete event Game of Life would be much more difficult
to implement.

48

Chapter 6

Variable Structure Models

The composition of a variable (sometimes called dynamic) structure model changes through time. New
components are added as, for example, machinery is installed in a factory, organisms reproduce, or shells
are fired from a cannon. Existing components are removed as machines break, organisms dies, or shells in
flight find their targets. Components are rearranged as, for example, parts move through a manufacturing
process, organisms migrate, or a command and control network loses communication lines.

For modeling systems with a dynamic structure Adevs provides a simple but effective mechanism to
coordinate changes in structure and changes of state. This mechanism is based on the Dynamic DEVS
modeling formalism described in A.M. Uhrmacher’s paper “Dynamic structures in modeling and simulation:
a reflective approach”, ACM Transactions on Modeling and Computer Simulation (TOMACS), Volume 11,
Issue 2, pgs. 202-232, April 2001.

6.1 Building and Simulating Variable Structure Models

Every Adevs model, Network and Atomic, has a virtual method called model transition . This method
is inherited from the Devs class that is at the top of the Adevs class hierarchy. The signature of the
model transition method is

bool model_transition()

and its default implementation simply returns false.
At the end of every simulation cycle (that is, after computing the models’ new states but prior to the

garbage collection step) the simulator invokes the model transition method of every Atomic model that
changed state in that cycle. When the model transition method is invoked the Atomic model can do
almost anything it likes except alter the component set of a Network model.

If a model’s model transition method returns true, then the simulator also calls the model transition
method of that model’s parent. The parent is, of course, a Network model; its model transition method
may add, remove, and rearrange the network’s components, but it must not delete any components! The sim-
ulator will automatically delete components removed from the model when the structure change calculations
are finished.

As before, if the Network’s model transition method returns true then the simulator invokes the
model transition method of the Network’s parent. Note, however, that the model transition method
of any model is invoked at most once in each simulation cycle. This invocation, if it occurs, takes place after
every component of the network qualifying for the evaluation of its model transition method has been
activated.

After invoking every eligible model’s model transition method, the simulator performs a somewhat
complicated cleanup process. This process requires that simulator construct two sets. The first set contains
all of the components that belonged to all of the Network models whose model transition method was

49

invoked and all of the components belonging to models that are in this set. The second set is defined in the
same way, but it is computed using sets of components as they are after the model transition methods
have been invoked.

The simulator deletes every model that has actually been removed; these are the models in the first set
but not in the second. The simulator initializes every model that is genuinely new by computing its next
event time (i.e., its creation time plus its time advance) and putting it into the event schedule; these are the
models in the second second set but not in the first. The simulator leaves all other models alone.

The procedure for calculating a change of structure can be summarized as follows:

1. Calculate the model transition method of every atomic model that changed state.

2. Construct the set of network models that contain an atomic model from step 1 whose model transition
method returned true. These network models are sort by their depth in the tree with the bottom-most
models first and top-most last. This will ensure that structure changes are calculated from the bottom
up.

3. Calculate the model transition methods of the networks in order. On completing each transition, do
the following:

(a) Remove the network from the list.

(b) If the network’s model transition method returns true, put the parent of the network into the
sorted list of networks from step 2. This ensures that a network’s model transition method is
invoked only after all of its eligible component’s have had their model transition methods invoked.

4. When there are no more networks in the list, do the following:

(a) Delete the components removed from the model (i.e., the models without a parent in the tree).

(b) Initialize the components add to the model.

The complete procedure is illustrated in Fig. 6.1. The black models’ model transition methods returned
true. The set of components examined before and after the structure change are listed above the before (left)
and after (right) trees. Notice that these models are in the sub-tree below the model C, which is the top-
most model in that sub-tree that returns false from its model transition method. Also note that while
the leaves of the tree may have had their model transition method’s invoked, none returns true and so
their parents’ model transition methods are not invoked nor are the sets of components considered when
determining what models have been added and removed from the model. The set of deleted components is
{c,D, d, e, f} − {e, g, d} = {c,D, f}. The set of new components is {e, g, d} − {c,D, d, e, f} = {g}.

The model transition method can break the strict hierarchy and modularity that is usually observed
when building Network models. Any Network model can in principle modify the component set of any
other model, regardless of proximity or hierarchy. The potential for anarchy is great, and so the design of a
variable structure model should be carefully considered. There are two approaches to such a design that are
simple and, in many cases, entirely adequate.

The first approach is to allow only Network models to effect structure changes and to restrict those
changes to the Network’s immediate sub-components. With this approach, an Atomic model initiates a
structure change by posting a structure change request for its parent. The Atomic model’s model transition
method returns true causing its parent’s model transition method to be invoked. The parent Network
model then retrieves and acts on the request posted by its component. The Network repeats this process
if it wants to effect structure changes involving models other than its immediate children; i.e., it posts a
request for its parent and returns true from its model transition method.

The second approach allows arbitrary structure changes by forcing the model at the very top of the
hierarchy to invoke its model transition method. This causes the simulator to consider every model in the
aftermath of a structure change. As in the first approach, an Atomic model that wants to effect a structure
change uses its model transition method to post a request for its parent. This request is percolated up
the model hierarchy by the Network models whose model transition methods always return true.

50

Figure 6.1: Illustration of a change of structure in a variable structure model.

The first approach trades flexibility for execution time; the second approach trades execution time for
flexibility. With the first approach, structure changes that involve a small number of components require a
small amount of work by the simulator. The scope of change must, however, be carefully restricted. With
the second approach, every structure change requires the simulator to include every part of the model in its
calculations, regardless of the actual extent of the change in structure. In this case, however, the scope of a
structure change may be unlimited.

6.2 A Variable Structure Example

The Custom Widget Company is expanding its operations. Plans are being drawn for a new factory that will
make custom gizmos (and the company name will be changed to The Custom Widget and Gizmo Company).
The machines for the factory are expensive to operate. To keep costs down, the factory will operate just
enough machinery to fill outstanding orders for gizmos. The factory must have enough machinery to meet
peak demand, but much of the machinery will be idle much of the time. The factory engineers want to
answer two questions: how many machines are needed and how much will it costs to operate the them.

We are going to use a variable structure model to answer these two questions. The model has three
components: a generator that creates orders for gizmos, a model of a machine, and a model of the factory
that contains the machines and activates and deactivates them as required to satisfy demand. The complete
model of the factory is illustrated in Fig. 6.2.

The generator creates new orders for the factory. Each order is identified with its own integer label,
and the generator produces orders at the rate anticipated by the factory engineers. Demand at the factory
is expected to be fairly steady with a new order arriving every 1/2 to 2 days; demand is modeled with a
random variable uniformly distributed in the range [0.5,2]. Here is the code for the generator:

#include "adevs.h"

// The Genr models factory demand. It creates new orders every 0.5 to 2 days.

class Genr: public adevs::Atomic<int>

{

public:

/**

* The generator requires a seed for the random number that determines

* the time between new orders.

*/

Genr(unsigned long seed):

51

Figure 6.2: Block diagram of the variable structure factory model. The broken lines indicate structural
elements that are subject to change.

adevs::Atomic<int>(),next(1),u(seed){ set_time_to_order(); }

// Internal transition updates the order counter and

// determines the next arrival time

void delta_int() { next++; set_time_to_order(); }

// Output function produces the next order

void output_func(adevs::Bag<int>& yb) { yb.insert(next); }

// Time advance returns the time until the next order

double ta() { return time_to_order; }

// Model is input free, so these methods are empty

void delta_ext(double,const adevs::Bag<int>&){}

void delta_conf(const adevs::Bag<int>&){}

// No explicit memory management is needed

void gc_output(adevs::Bag<int>&){}

private:

// Next order ID

int next;

// Time until that order arrives

double time_to_order;

// Random variable for producing order arrival times

adevs::rv u;

// Method to set the order time

void set_time_to_order() { time_to_order = u.uniform(0.5,2.0); }

};

The model of a machine is similar to the Clerk in section 3. A machine requires 3 days to make a gizmo
and orders for gizmos are processed first come, first serve. The Machine’s model transition method is
inherited from its Atomic base class. I’ll discuss the role of the model transition method after introducing
the Factory class; here is the code for the Machine.

#include "adevs.h"

#include <cassert>

#include <deque>

/**

* This class models a machine as a fifo queue and server with fixed service time.

* The model_transition method is used, in conjunction with the Factory model_transition

52

* method, to add and remove machines as needed to satisfy a 6 day turnaround time

* for orders.

*/

class Machine: public adevs::Atomic<int>

{

public:

Machine():adevs::Atomic<int>(),tleft(DBL_MAX){}

void delta_int()

{

q.pop_front(); // Remove the completed job

if (q.empty()) tleft = DBL_MAX; // Is the Machine idle?

else tleft = 3.0; // Or is it still working?

}

void delta_ext(double e, const adevs::Bag<int>& xb)

{

// Update the remaining time if the machine is working

if (!q.empty()) tleft -= e;

// Put new orders into the queue

adevs::Bag<int>::const_iterator iter = xb.begin();

for (; iter != xb.end(); iter++)

{

// If the machine is idle then set the service time

if (q.empty()) tleft = 3.0;

// Put the order into the back of the queue

q.push_back(*iter);

}

}

void delta_conf(const adevs::Bag<int>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

void output_func(adevs::Bag<int>& yb)

{

// Expel the completed order

yb.insert(q.front());

}

double ta()

{

return tleft;

}

// The model transition function returns true if another order can not

// be accommodated or if the machine is idle.

bool model_transition()

{

// Check that the queue size is legal

assert(q.size() <= 2);

// Return the idle or full status

return (q.size() == 0 || q.size() == 2);

}

// Get the number of orders in the queue

unsigned int getQueueSize() const { return q.size(); }

53

// No garbage collection

void gc_output(adevs::Bag<int>&){}

private:

// Queue for orders that are waiting to be processed

std::deque<int> q;

// Time remaining on the order at the front of the queue

double tleft;

};

The number of Machine models contained in the Factory model at any time is determined by the
current demand for gizmos. The real factory, of course, will have a fixed number of physical machines on the
factory floor, but the planners do not yet know how many machines are needed. A variable structure model
that creates and destroys machines as needed is a good way to accommodate this uncertainty.

The Custom Widget and Gizmo Company has built its reputation on its guaranteed service time, from
order to delivery, of 15 days. This leaves only 6 days for the manufacturing process, the remaining time
being consumed by order processing, delivery, etc.

A single machine can meet this schedule if it has at most one order waiting in its queue. However, it costs
a dollar a day to operate a machine and so the factory engineers want to minimize the number of machines
working at any time. To accomplish this goal, the factory’s operating policy has two rules:

1. Assign incoming orders to the active machine that can provide the shortest turn around time and

2. keep just enough active machines to have capacity for one additional order.

The Factory model implements this policy in the following way. If a Machine becomes idle or its queue
is full (i.e., the machine is working on one order and has another order waiting in its queue), then that
machine’s model transition method returns true. This causes the Factory’s model transition method
to be invoked. The Factory first looks for and removes machines that have no work. Then it examines each
remaining machine to determine if the required one unit of additional capacity is available. If the required
unit of additional capacity is not available then the Factory creates a new machine.

This is an example of the first approach to building a variable structure model. With this design, the
simulator’s structure calculations are done only when the Factory’s model transition method is invoked,
and are therefore limited to instants when Machine models are likely to be created or destroyed. Our
design, however, is complicated somewhat by the need for Machine and Factory objects to communicate;
i.e., the Machines must watch their own status and inform the Factory when there is a potential shortage
of capacity.

If we had used the second approached to build our variable structure model, then the Machines’
model transition methods could have simply returned true; no need for a status check. The Factory
would iterate through its list of Machines, adding and deleting Machines as needed. This is more compu-
tationally expensive; the simulator looks for changes in the Factory’s set of components at each simulation
cycle. However, the design of the model is simpler, albeit only marginally so in this instance.

The Factory is a Network model and must implement all of the Network’s virtual methods: route ,
getComponents, and model transition . The route method is responsible for assigning orders to the
proper Machine. When an order arrives, it is sent to the machine that will most quickly satisfy the
order. The getComponents method puts the current set of machines into the Set c of components. The
model transition method examines the status of each machine, deleting idle machines and adding new
machines if they are needed to maintain reserve capacity. The complete Factory implementation is shown
below.

#include "adevs.h"

#include "Machine.h"

#include <list>

class Factory: public adevs::Network<int> {

54

public:

Factory();

void getComponents(adevs::Set<adevs::Devs<int>*>& c);

void route(const int& order, adevs::Devs<int>* src,

adevs::Bag<adevs::Event<int> >& r);

bool model_transition();

~Factory();

// Get the number of machines

int getMachineCount();

private:

// This is the machine set

std::list<Machine*> machines;

// Method for adding a machine to the factory

void add_machine();

// Compute time needed for a machine to finish a new job

double compute_service_time(Machine* m);

};

#include "Factory.h"

using namespace adevs;

using namespace std;

Factory::Factory():

Network<int>() { // call the parent constructor

add_machine(); // Add the first machine the the machine set

}

void Factory::getComponents(Set<Devs<int>*>& c) {

// Copy the machine set to c

list<Machine*>::iterator iter;

for (iter = machines.begin(); iter != machines.end(); iter++)

c.insert(*iter);

}

void Factory::route(const int& order, Devs<int>* src, Bag<Event<int> >& r) {

// If this is a machine output, then it leaves the factory

if (src != this) {

r.insert(Event<int>(this,order));

return;

}

// Otherwise, use the machine that can most quickly fill the order

Machine* pick = NULL; // No machine

double pick_time = DBL_MAX; // Infinite time for service

list<Machine*>::iterator iter;

for (iter = machines.begin(); iter != machines.end(); iter++) {

// If the machine is available

if ((*iter)->getQueueSize() <= 1) {

double candidate_time = compute_service_time(*iter);

// If the candidate service time is smaller than the pick service time

if (candidate_time < pick_time) {

pick_time = candidate_time;

pick = *iter;

55

}

}

}

// Make sure we found a machine with a small enough service time

assert(pick != NULL && pick_time <= 6.0);

// Use this machine to process the order

r.insert(Event<int>(pick,order));

}

bool Factory::model_transition() {

// Remove idle machines

list<Machine*>::iterator iter = machines.begin();

while (iter != machines.end()) {

if ((*iter)->getQueueSize() == 0) iter = machines.erase(iter);

else iter++;

}

// Add the new machine if we need it

int spare_cap = 0;

for (iter = machines.begin(); iter != machines.end(); iter++)

spare_cap += 2 - (*iter)->getQueueSize();

if (spare_cap == 0) add_machine();

return false;

}

void Factory::add_machine() {

machines.push_back(new Machine());

machines.back()->setParent(this);

}

double Factory::compute_service_time(Machine* m) {

// If the machine is already working

if (m->ta() < DBL_MAX) return 3.0+(m->getQueueSize()-1)*3.0+m->ta();

// Otherwise it is idle

else return 3.0;

}

int Factory::getMachineCount() {

return machines.size();

}

Factory::~Factory() {

// Delete all of the machines

list<Machine*>::iterator iter;

for (iter = machines.begin(); iter != machines.end(); iter++)

delete *iter;

}

To illustrate how the model transition method works, let us manually simulate the processing of a few
orders: the first order arrives at day zero, the second order at day one, and the third order at day three. At
the start, on day zero, there is one idle Machine. When the first order arrives the Factory’s route method
is invoked, and it sends the order to the idle Machine. The Machine’s delta ext method is invoked next,
and it begins processing the order. Following this, the Machine’s model transition method is invoked, it

56

discovers that the Machine is working and has space in its queue, and returns false.
When the second order arrives on day one, the Factory’s route method is called again. There is only

one Machine and it has space in its queue so the order is sent to that Machine. The Machine’s delta ext
method is invoked next and it queues the order. The Machine’s model transition method is now invoked;
its queue is full and so the method returns true. This causes the the Factory’s model transition method
to be invoked; it examines the Machine’s status, sees that it overloaded, and creates a new Machine.

At this time, the working Machine needs two more days to finish the first order, and it will not complete
its second order until a total of five days have elapsed.

There is a great deal of activity when the third order arrives on day three. First, the working Machine’s
output func method is called, and it spits out the first completed order (i.e., the order begun on day zero).
Next the Factory’s route method is called twice. In the first call, it converts the Machine’s output into
an output from the Factory. In the second call, it routes the new order to the idle Machine (these calls to
route could occur in either order).

The input and output events now routed, the state transition methods for the two Machines are invoked.
The working Machine’s delta int method is called and it starts work on its queued order. The idle
Machine’s delta ext method is called and it begins processing the new order. Last the model transition
methods of both Machines are invoked; both Machine’s have room in their queue and so both methods
return false.

For the sake of illustration, suppose no orders arrive in the next three days (this is impossible when
orders arrive every one-half to two days, but bear with me). At day six, both machines finish their orders.
The Machines’ output func methods are invoked, producing the finished orders. These become output
from the Factory via the Factory’s route method.

Next, the Machines’ delta int methods are called and both Machines become idle. After this, the
Machines’ model transition methods are invoked and these return true because the machines are idle.
This causes the Factory’s model transition method to be called. It examines the status of each Machine,
sees that they are idle, and deletes both of them. Last the Factory computes its available capacity, which is
now zero, and create a new machine. Incidentally, this returns the Factory to its initial configuration with
one idle Machine.

The factory engineers have two questions: how many machines are needed and what is the factory’s
annual operating cost. These questions can be answered with a plot of the count of active machines versus
time. The required number of machines is the maximum value of the active machine count. Each machine
costs a dollar per day to operate, and so the operating cost is just the one year time integral of the active
machine count. One plot of the active machine count versus time is shown in Fig. 6.3. The maximum count
of active machines 4 and the annual operating cost is $944 (this plot is from the first simulation run listed
in Table 6.1).

New orders arrive at random and so the annual operating cost and maximum machine count are them-
selves random numbers. Consequently, data from several simulation runs are needed to make an informed
decision. Somewhat arbitrarily, I have listed ten simulation runs; each uses a different sequence of random
numbers and therefore produces a different outcome (i.e., another sample of the maximum active machine
count and annual operating cost). The maximum active machine count and annual operating cost generated
by each run is shown in Table 6.1. From this data, the factory engineers conclude that 4 machines are
required and the average annual operating cost will be $961.

Random number seed Maximum machine count Annual operating cost
1 4 $944.05
234 4 $968.58
15667 4 $980.96
999 3 $933.13
9090133 4 $961.65
6113 4 $977.33

Table 6.1: Outcomes of ten factory simulations.

57

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350

m
ac

hi
ne

 c
ou

nt

time (days)

Figure 6.3: Active machine count over one year.

58

Chapter 7

Continuous Models

Many engineered systems consist of computers, communications networks, and other digital (i.e., discrete
event) systems whose purpose is to monitor and control a physical (electrical, mechanical, thermodynamic,
etc.) process. Models of these systems have parts modeled as discrete event systems, parts modeled with
continuous (differential or differential-algebraic) equations, and the interaction of these parts is crucial to
understanding the system’s behavior. Where the continuous models interact with the discrete event models,
these interactions are necessarily discrete. For example, a digital thermometer reports temperature in discrete
increments, electrical switches are either open or closed, a threshold sensor is either tripped or it is not.
Discrete interactions in a combined continuous-discrete event simulation are managed just as before; the
models interact by producing output events and reacting to input events.

If, on the other hand, two systems interact continuously, then those interacting parts at least are modeled
with continuous equations. In this case, accurate simulation is greatly facilitated by lumping the two systems
into a single assembly; in Adevs this assembly is an Atomic model that encapsulates the system’s continuous
dynamics. The essence of the approach to combined simulation in Adevs consists therefore of building atomic
models that i) approximate the behavior of the continuous systems and ii) generates and consumes events
at those instants when the continuous system interacts with a discrete event one.

There are three possibly outcomes of this lumping process. One possibility is that we end up with a single
assembly; in this case our model is essentially continuous and we are probably better off using a simulation
tool for continuous systems. At the other extreme, we find that the continuous parts of our model are
very simple, yielding to analytical solutions that are easily transformed into discrete event models. Between
these two extremes are models with continuous dynamics that are not simple but also do not dominate the
modeling problem. The continuous system simulation part of Adevs is aimed at this type of model.

7.1 Differential equation modeling with the ode system class

Models described by ordinary differential equations are implemented by sub-classing the ode system class.
This class has two sets of methods: the first is for the model’s continuous dynamics and the second is for
the model’s discrete event dynamics. I’ll illustrate both with the simple, if somewhat contrived, example of
a cherry bomb1. This bomb is dropped from a height of 1 meter and bounces until it either explodes or is
doused with water. We’ll assume that the cherry bomb only bounces up and down and is perfectly elastic.
The cherry bomb explodes 2 seconds from the time it is lit and dropped unless doused first. Dousing the
cherry bomb puts out the fuse2. Dousing is a discrete input event and the cherry bomb produces a discrete
output event if it explodes.

This model has two continuous state variables: the height and velocity of the cherry bomb. Between

1A cherry bomb is a small red firecracker. They are dangerous, and illegal in the United States. Nonetheless, every school

seems to have at least one obnoxious kid who likes to put them into toilets.
2Cherry bomb fuses are frequently water proofed.

59

events, these variables are governed by the pair of differential equations

v̇ = −9.8 (7.1)

ḣ = v (7.2)

where 9.8 meters per second per second is acceleration due to gravity, v is velocity, and h is height. In this
example, it is also useful to know the current time. We keep track of this by adding one more differential
equation

ṫ = 1 (7.3)

whose solution is t0 + t or just t if we set t0 = 0. The ball bounces when it hits the floor, and bouncing
causes the ball’s velocity to change sign; specifically

h = 0 & v < 0 =⇒ v ← −v (7.4)

where =⇒ is logical implication and ← indicates an assignment.
Equations 7.1, 7.2, and 7.3 are the state variable derivatives, and these equations are implemented in the

der func method of the ode system class. The signature for this method is

void der_func(const double* q, double* dq)

The q pointer is the array of state variable values; in this case h, v, and t. The dq pointer is the array of
state variable derivatives; in this case ḣ, v̇, and ṫ. When the simulator calls the der func method, it supplies
q. In response, the method computes the values of ḣ, q̇, and ṫ and stores them in the dq array.

Equation 7.4 is a state event condition and it is implemented in two parts. The state event func
method implements the ‘if’ part (left hand side) of the condition. The signature of this method is

void state_event_func(const double *q, double *z)

Again, the supplied q array contains the current state variable values. These are used to evaluate the state
event condition and store the result in the z array. The simulator detects state events by looking for changes
in the sign of the z array entries. Note that the event condition should be continuous in the state variables
on which it depends. In the case of the cherry bomb this is simple to do: we simply use z = h if v < 0 and
z = 1 if v >= 0.

The ‘then’ part (right hand side) is implemented with the internal event method, which the simulator
invokes when the state event condition is true. The signature of this method is

void internal_event(double *q, const bool *state_event)

where, again, q is the value of the state variables at the event. The entries of the array state event are
true for each z in the state event condition array that evaluates to zero. This array therefore has one entry
for each state event condition, and it has one additional entry to indicate time events, which are described
below.

The cherry bomb has one discrete state variable with three possible values: the fuse is lit, the fuse is not
lit, and the bomb is exploded. This variable changes in response to two events. The first event is when the
bomb explodes; this is a time event that we know will occur 2 seconds from the time that the fuse it lit. The
time event func method is used to schedule the explosion by returning the time remaining until the fuse
burns out. The signature of the of this method is

double time_event_func(const double* q)

As before, q is the current value of the state variables. The time event func is similar to the familiar ta
method; it is used to schedule autonomous events based on the current value of the model’s state variables.
When this time expires, the simulator calls the internal event method with the last flag in the state event
array set to true.

The second event that can change the state of the fuse is dousing with water. This an external event.
External events, of course, are not scheduled by the model itself; they occur when and if the input event
arrives. The external event method implements the response of the cherry bomb to dousing with water.
Its signature is

60

void external_event(double *q, double e, const Bag<X> &xb)

The array q contains the values of the continuous state variables, e is the time since the last discrete event,
and xb is the bag of input. The douse event is an input and it appears in the input bag xb if the event
occurs.

As before, it is possible for an external and internal event to coincide. When this happens, the simulator
calls the method confluent event . Its signature is

void confluent_event (double *q, const bool *state_event, const Bag<X> &xb)

and its arguments are as described for the internal and external methods.
The cherry bomb model produces an output event when it explodes, and the output func method is

use for this purpose. Its signature is

void output_func(const double *q, const bool *state_event, Bag<X> &yb)

Its q and state event arguments are as described for the internal event method, and the bag yb is to be filled
with the model’s output. As with an Atomic model, the output func is always invoked immediately prior
to the internal event and confluent event methods.

All that remains in the implementation is to supply a gc output for collecting garbage, a constructor,
and a method for initializing the continuous state variables. The gc output method works identically to that
of the Atomic class and so needs no more discussion here. The constructor for the cherry bomb must call
the constructor of its ode system base class. The signature of this method is

ode_system (int N_vars, int M_event_funcs)

where N vars is the number of entries in the q and dq arrays (i.e., the number of continuous state variables)
and M event funcs is the number of entries in the z and state event arrays (plus one for the time event). For
the cherry bomb, N vars is three and M event funcs is one.

The constructor does not initialize the continuous state variables. Instead, the simulator calls the init
method whose signature is

void init(double* q)

and where q is an array that should be filled with the initial values for, in the case of the cherry bomb, h,
v, and t. The complete implementation of the CherryBomb is listed below.

#include "adevs.h"

#include <iostream>

using namespace std;

using namespace adevs;

// Array indices for the CherryBomb state variables

#define H 0

#define V 1

#define T 2

// Discrete variable enumeration for the CherryBomb

typedef enum { FUSE_LIT, DOUSE, EXPLODE } Phase;

class CherryBomb: public ode_system<string> {

public:

CherryBomb():ode_system<string>(

3, // three state variables including time

1 // 1 state event condition

) {

phase = FUSE_LIT; // Light the fuse!

61

}

void init(double *q) {

q[H] = 1.0; // Initial height

q[V] = 0.0; // Initial velocity

q[T] = 0.0; // Start time at zero

}

void der_func(const double* q, double* dq) {

dq[V] = -9.8;

dq[H] = q[V];

dq[T] = 1.0;

}

void state_event_func(const double* q, double *z) {

// Test for hitting the ground.

if (q[V] < 0.0) z[0] = q[H];

else z[0] = 1.0;

}

double time_event_func(const double* q) {

if (q[T] < 2.0) return 2.0 - q[T]; // Explode at time 2

else return DBL_MAX; // Don’t do anything after that

}

void external_event(double* q, double e, const Bag<string>& xb) {

phase = DOUSE; // Any input is a douse event

}

void internal_event(double* q, const bool* state_event) {

if (state_event[0]) q[V] = -q[V]; // Bounce!

if (state_event[1]) phase = EXPLODE;

}

void confluent_event(double* q, const bool* state_event,

const Bag<string>& xb) {

internal_event(q,state_event);

external_event(q,0.0,xb);

}

void output_func(const double *q, const bool* state_event,

Bag<string>& yb) {

if (state_event[1] && phase == FUSE_LIT)

yb.insert("BOOM!"); // Explode!

}

void postStep(const double* q) {

// Write the current state to std out

cout << q[T] << " " << q[H] << " " << q[V] << " " << phase << endl;

}

// No garbage collection is needed

void gc_output(Bag<string>&){}

// Get the current value of the discrete variable

Phase getPhase() { return phase; }

private:

Phase phase;

};

The CherryBomb itself is not derived from Atomic and so cannot be simulated directly. Rather, it
is given to a Hybrid object, which is a kind of Atomic, that generators the trajectories for the model.
This Hybrid object is used just like any other Atomic model. Input to this Hybrid object triggers an

62

input event for the ode system that is contains. Likewise, output from the ode system becomes output
from the Hybrid object. Most importantly, the hybrid model can be part of any network of discrete event
models.

A Hybrid object is provided with three things when it is constructed. First is the ode system it-
self. Second is an ode solver that produces the model’s continuous trajectories. Adevs has two types of
ode solvers: a corrected euler solver that uses the corrected Euler method and a rk 45 solver that uses
a fourth order Runge-Kutta method. Third is an event locator that finds the location of state events as
the simulation progresses. Adevs has only one of these: the linear event locator. The code below shows
how these are used to create and simulate a Hybrid object.

int main() {

// Create the model

CherryBomb* bomb = new CherryBomb();

// Create the ODE solver for this model. Maximum error

// tolerance at each step is 1E-4 and the maximum

// size of an integration step is 0.01.

ode_solver<string>* ode_solve =

new corrected_euler<string>(bomb,1E-4,0.01);

// Create the event locator for this model. Maximum

// error tolerance for the location of an event in

// the state space is 1E-8.

event_locator<string>* event_find =

new linear_event_locator<string>(bomb,1E-8);

// Create an atomic model that puts all of these

// together to simulate the continuous system.

Hybrid<string>* model =

new Hybrid<string>(bomb,ode_solve,event_find);

// Create and run a simulator for this model

Simulator<string>* sim = new Simulator<string>(model);

while (bomb->getPhase() == FUSE_LIT)

sim->execNextEvent();

delete sim; delete bomb;

return 0;

}

Figure 7.1 shows the cherry bomb’s trajectory from t = 0 to its explosion at t = 2. This plot was
produced using the simulation program listed above. There is nothing particular surprising about it, but
you can observe the discrete changes in the cherry bomb’s trajectory. There are two bounce events at t ≈ 0.45
and t ≈ 1.4. The cherry bomb explodes abruptly at the start of its third descent.

7.2 Modeling hybrid systems with adevs and OpenModelica

It is possible to generate models in the form described above automatically from the Modelica programming
language. This has several advantages, among them are:

1. You may be able to reuse large numbers of model components from the Modelica standard library.

2. Very complicated models, including differential-algebraic systems and models that difficult to initialize,
may have code for the simulation automatically generated.

3. Modification of the continuous model will be much simpler in the future because the model description is
separated from the problems of its simulation (these being handled automatically by the OpenModelica
compiler and runtime system).

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

he
ig

ht
 (

m
et

er
s)

time (seconds)

BOOM !

Figure 7.1: A simulation of the cherry bomb model that terminates when the cherry bomb explodes.

To take advantage of the Modelica language, you will need to get and install from source the OpenMod-
elica compiler, which is hosted at http://www.openmodelica.org/. Instructions for building the compiler,
source code for the compiler, and other information on the Modelica language are available from the Open
Modelica group and at the Modelica Associate website https://www.modelica.org/. Instructions for build-
ing the adevs runtime environment for OpenModelica may be found in the README file in the adevs/src
directory of the adevs package.

The adevs runtime environment for OpenModelica is relatively new, but aims to support most of the
functionality of the standard OpenModelica runtime system with the following important caveats:

1. You may only solve ordinary systems of equations in the form ẋ = f(x, t) or semi-explicit differential-
algebraic equations in the form ẋ = f(x, y, t) subject to g(x, y, t) = 0.

2. Many types of discrete behaviors are not supported. There is explicit support for if and when clauses,
but other discrete functions (e.g., sample statements) should not be relied upon unless they appear in
examples shipped with adevs.

Assuming you have a working compiler, you may generate and adevs model with the command ’omc +s
+simCodeTarget=Adevs myModel.mo’ where myModel.mo is the name of your Modelica model file. The
adevs/examples directory gives several instances of Modelica models and instructions for compiling them.
I will build one such model here to demonstrate the general approach to hybrid modeling with adevs and
OpenModelica. The code and makefiles for this example can be found in the adevs/examples/modelica
directory.

To begin, consider a simple circuit that consists of a voltage source connected to single resistor with its
other terminal grounded (i.e., Voltage source – resistor – ground). The voltage source has a setpoint Vref
that is controlled discretely. The equation governing the behavior of the voltage source is

v̇ = (Vref − v)1/3

and the current through the resistor is i = v/R. Our Modelica model will have Vref as an input; the source
of Vref will be a discrete event model implemented in adevs. With this assumption, the Modelica model
’Circuit.mo’ that describes this circuit is shown below.

connector Pin

flow Real i;

Real v;

end Pin;

64

http://www.openmodelica.org/
https://www.modelica.org/

partial model OnePin

Pin T;

end OnePin;

partial model TwoPin

Pin T1;

Pin T2;

end TwoPin;

class Resistor extends TwoPin;

parameter Real R(start=1);

equation

T1.v-T2.v = T1.i*R;

T1.i + T2.i = 0;

end Resistor;

class Ground extends OnePin;

equation

T.v = 0;

end Ground;

class VoltageSource extends OnePin;

parameter Real Vref(start=0);

equation

der(T.v) =

if Vref > T.v then (abs(Vref-T.v))^(1.0/3.0)

else -(abs(Vref-T.v))^(1.0/3.0);

initial equation

der(T.v) = 0;

end VoltageSource;

class Circuit

VoltageSource V;

Resistor R;

Ground Gnd;

equation

connect(V.T,R.T1);

connect(R.T2,Gnd.T);

end Circuit;

To compile this model, issue the command ’omc +s +simCodeTarget=Adevs Circuit.mo’. This creates
a C++ class called Circuit. Two files are created that implement this class: Circuit.h and Circuit.cpp. The
header file is the most informative, and an abbreviated listing is shown below.

#ifndef __omc_Circuit_h_

#define __omc_Circuit_h_

#include "adevs.h"

/**

* Define the input and output type of the adevs models.

*/

#ifndef OMC_ADEVS_IO_TYPE

65

#define OMC_ADEVS_IO_TYPE double

#endif

/**

* Simulation code for Circuit

* generated by the OpenModelica Compiler.

*/

class Circuit:

public adevs::ode_system<OMC_ADEVS_IO_TYPE>

{

public:

/**

* Constructor. New state events can be added to the model by

* passing the number of new event conditions to the constructor

* and then extending the state_event_func method. Your state

* events will begin at the index returned by numStateEvents().

*/

Circuit(int extra_state_events = 0);

/// Destructor

~Circuit();

/// Index of the first extra state event

int numStateEvents() const { return 1; }

/**

* This method is used to set the hysteresis value that the

* model will use when detecting state events. The default

* value is 1E-4. Whatever you use, it must be larger than

* the error tolerance of the event detection algorithm

* that you are using.

*/

void setEventHysteresis(double eps) { epsilon = eps; }

/**

* These methods are generated by the OpenModelica compiler.

*/

void init(double* q);

void der_func(const double* q, double* dq);

void postStep(const double* q);

void state_event_func(const double* q, double* z);

/**

* These methods may be overridden by any derived class.

*/

virtual void extra_state_event_funcs(double* z){}

double time_event_func(const double* q) { return DBL_MAX; }

void internal_event(double* q, const bool* state_event);

void external_event(double* q, double e,

const adevs::Bag<OMC_ADEVS_IO_TYPE>& xb){}

void confluent_event(double *q, const bool* state_event,

const adevs::Bag<OMC_ADEVS_IO_TYPE>& xb){}

void output_func(const double *q, const bool* state_event,

adevs::Bag<OMC_ADEVS_IO_TYPE>& yb){}

void gc_output(adevs::Bag<OMC_ADEVS_IO_TYPE>& gb){}

/**

* These methods are used to access variables and

66

* parameters in the modelica model by name.

*/

double get_time() const { return timeValue; }

double get_PVPT$Pv() const { return PVPT$Pv; }

double get_PDERPVPT$Pv() const { return PDERPVPT$Pv; }

double get_$PGnd$PT$Pi() const { return $PGnd$PT$Pi; }

double get_PRPT2$Pv() const { return PRPT2$Pv; }

double get_$PGnd$PT$Pv() const { return $PGnd$PT$Pv; }

double get_PVPVref() const { return PVPVref; }

double get_PRPR() const { return PRPR; }

protected:

/**

* Calculate the values of the state and algebraic variables.

* State variables will be initialized to q if provided,

* or left unchanged if not.

*/

void calc_vars(const double* q = NULL, bool doReinit = false);

/**

* These methods may be used to change paramters

* and state variables at events. Remember to call

* calc_vars(q,true) if you change anything.

*/

void set_PVPT$Pv(double* q, double val) { q[0] = PVPT$Pv=val; }

void set_PVPVref(double val) { PVPVref=val; }

void set_PRPR(double val) { PRPR=val; }

};

#endif

This Circuit class can be used as is or (as I will soon show) be extended to add new, discrete event
dynamics to it. The major features of this class are as follows:

1. The constructor, which lets you add state event functions to the model.

2. The extra state event function that lets implement the extra state events indicated to the constructor.

3. The numStateEvents method that tells you where in the event array your extra state events begin.

4. The set and get methods, which let you read and write the continuous variables and parameters of the
model.

5. The calc vars method, which lets you reinitialize the modelica model at discrete events.

6. The event functions (internal, external, etc.) which can be extended to add new discrete event dynam-
ics.

For this example, the circuit class is extended to accept as input discrete changes to Vref and produce the
voltage as an output when Vref is reached. These new behaviors are implemented in a derived class called
CircuitExt, which adds the following:

1. A state event function that triggers on v reaching Vref.

2. An output function that generates v when the state event occurs.

67

3. An external event function that changes Vref to the value received.

The complete code listing for the derived class is shown below.

/**

* This class extends the Modelica Circuit model to

* add an output when v = Vref and to adjust Vref

* on receiving discrete input.

*/

class CircuitExt:

public Circuit

{

public:

CircuitExt():

Circuit(1), // Add one state event to the base class

atVref(false) // Flag to indicate when Vref is reached

{

}

/**

* Compute the extra state event.

*/

void extra_state_event_funcs(double* z)

{

if (!atVref)

z[0] = get_PVPT$Pv()-get_$PV$PVref();

else

z[0] = 1.0;

}

/**

* Indicate that Vref has been reached when that event

* occurs.

*/

void internal_event(double* q, const bool* event_flags)

{

// Apply the internal event function of the base class

Circuit::internal_event(q,event_flags);

// If this is the extra state event, then set atVref to true

if (event_flags[numStateEvents()]) atVref = true;

}

/**

* Change Vref on receiving input.

*/

void external_event(double* q, double e, const Bag<double>& xb)

{

// Apply the external event function of the base class

Circuit::external_event(q,e,xb);

// Set the reference voltage and indicate that we are no longer

// at the reference.

set_PVPVref(*(xb.begin()));

atVref = false;

// Reinitialize the continuous model. This is really only necessary

// if your discrete event may result in new values for the

// state variables (discrete or continuous) of the modelica model.

68

calc_vars(q,true);

}

void confluent_event(double* q, const bool * event_flags,

const Bag<double>& xb)

{

internal_event(q,event_flags);

external_event(q,0.0,xb);

}

void output_func(const double* q, const bool* event_flags,

Bag<double>& yb)

{

// If this was the reference being reached, then

// output the current value of the voltage.

if (event_flags[numStateEvents()])

{

yb.insert(get_PVPT$Pv());

cerr << "Reached Vref=" << get_PVPT$Pv()

<< " @ t=" << get_time() << endl;

}

}

void print_state()

{

cout <<

get_time() << " " << // Print the time

get_PVPT$Pv() << " " << // The voltage

get_$PGnd$PT$Pi() << " " << // Current through the resistor

endl;

}

private:

bool atVref;

};

The main function for a simulation of this model is shown below. The main simulation routine injects
and event at t = 1 and runs the simulation for another two seconds to t = 3. A plot of the trajectory for
this model and its input and output events are shown in Fig. 7.2 below.

int main()

{

// Create the circuit

CircuitExt* model = new CircuitExt();

// Create an atomic model to simulate it

Hybrid<OMC_ADEVS_IO_TYPE>* hybrid_model =

new Hybrid<OMC_ADEVS_IO_TYPE>(

model,

new corrected_euler<OMC_ADEVS_IO_TYPE>(model,1E-5,0.01),

new linear_event_locator<OMC_ADEVS_IO_TYPE>(model,1E-5));

// Create the simulator

Simulator<OMC_ADEVS_IO_TYPE>* sim =

new Simulator<OMC_ADEVS_IO_TYPE>(hybrid_model);

model->print_state();

// Simulate to t = 1

while (sim->nextEventTime() <= 1.0)

{

69

sim->execNextEvent();

model->print_state();

}

// Inject an input

Bag<Event<double> > input_bag;

input_bag.insert(Event<double>(hybrid_model,0.5));

sim->computeNextState(input_bag,1.0);

// Simulate from t=1 to t=5

while (sim->nextEventTime() <= 3.0)

{

sim->execNextEvent();

model->print_state();

}

// Done, cleanup

delete sim;

delete hybrid_model;

return 0;

}

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

vo
lts

time

Vref=0.5 Vref reached

Figure 7.2: A simulation of the circuit model.

70

Chapter 8

The Simulator Class

The functionality of the Simulator class is broken into three pieces: determining the model’s time of next
event, extracting output from the model, injecting input into the model, and advancing the simulation clock.
The first piece of functionality is provided by the nextEventTime method with which we are already
familiar. I’ll address the three remaining pieces in turn.

There are two essential steps for extracting output from your model. The first step is to register an
EventListener with the simulator. This is done by i) creating a subclass of the EventListener and
ii) given this class to the Simulator’s addEventListener method. The EventListener’s outputEvent
method is then used to intercept output originating from Atomic and Network models.

The second step is to invoke the Simulator’s computeNextOutput method, which performs the output
calculations and provides the results to registered EventListeners. The signature of computeNextOutput
is

void computeNextOutput()

and it computes the model output at the time given by the nextEventTime method. The computeNextOut-
put method invokes the output func method of every imminent Atomic model, maps outputs to inputs by
calling the route method of Network models, and calls the outputEvent method of every EventListener
registered with the Simulator. The computeNextOutput method anticipates the output of your model
from its current state assuming that no input events will intervene between now and the nextEventTime .

The computeNextState method is used to inject events into a model and advance the simulation clock.
The method signature is

void computeNextState(Bag<Event<X> >& input, double t)

where the Event class is the same one that the EventListener accepts to its outputEvent method. The
Event class has two fields: a pointer to a model of type Devs<X> (i.e., a Network or Atomic model)
and a value of type X.

The computeNextState method applies a bag of input Events to the model at time t. If the input bag
is empty and t is equal to the next event time, then this method has the same effect as execNextEvent : it
calculates the output values at time t using the computeNextOutput method, computes the next state of
all models undergoing internal and external events, computes structure changes, and advances the simulation
clock.

If the input bag is not empty then the value of each Event is applied as an input to the model pointed
to by that Event. If, in this case, t is equal to the next event time then the method also follows the usual
steps of invoking the computeNextOutput method and calculating state and structure changes. However,
if t is less than the Simulator’s next event time, then the procedure is nearly identical excepting that the
computeNextOutput method is not invoked. In this case, the only input events for any model are those
provided in the input bag.

71

The Simulator’s execNextEvent method, the workhorse of most simulation programs, actually defers
its job to two these two methods. The implementation takes only two lines; the Bag bogus input is empty.

void execNextEvent() {

computeNextOutput();

computeNextState(bogus_input,nextEventTime());

}

The Simulator’s computeNextOutput , computeNextState , and execNextEvent methods throw an
exception if a model violates either of two constraints: i) the time advance is negative and ii) the coupling
constraints described in section 5.1 and illustrated in Figure 5.4, are violated. The Adevs exception class
is derived from the standard C++ exception class; the method what returns a string that describes the
exception condition and the method who returns a pointer to the model that caused the exception.

The Adevs exception class is intended to assist with debugging simulations. There isn’t much you can
do at run-time to fix a time advance method or reorganize a model’s structure (or fix the structure change
logic), but the simulator tries to be friendly by identifying a problem before it becomes an obscure and
difficult to find bug.

72

Chapter 9

Simulation on multi-core computers

In addition to the sequential Simulator class, Adevs has a ParSimulator class that is designed specifically to
take advantage of processors that have multiple cores and shared memory machines with several processors,
these possibly having several cores each. The parallel simulator is in most respects identical to the sequential
simulator, and this section of the manual therefore focuses on where it is different.

The ParSimulator class is designed specifically (only, really) to support symmetric, shared memory multi-
processors (SMPs). The multi-core processors that have become ubiquitous in recent years are an important
instance of this class of machines. The software technology that underlies the ParSimulator is OpenMP (see
http://www.openmp.org), which is a standardized extension for C and C++ compilers and runtime systems
to support multi-threaded computing. The OpenMP standard is now support by most (probably all) ma-
jor compilers: the GNU C++ Compiler and professional editions of Microsoft Visual Studio are important
examples (important to me, that is, because those are what I use for most of my simulation work).

The critical first step, therefore, to using the ParSimulator is to enable the OpenMP extensions for your
compiler. For the GNU C++ compiler, simply add the flag ’-fopenmp’ to your linker and compiler arguments.
For MS Visual Studio, this is a build option (though I forget the location of the switch, and do not at the
moment have access to the professional edition). For other compilers and development environments, see
your documentation. Prior to executing a simulation, the maximum number of threads that will be used
by OpenMP (and, therefore, the simulator) can be set by setting the OMP NUM THREADS environment
variable (this works for the GNU compilers, at least). The default in most cases is to use a number of threads
equal to the number of processors or cores in your computer.

Having enabled the OpenMP options for your compiler, you are ready to start preparing your model to
work with the parallel simulator. As a first step, you can do the following. This example assumes that your
main simulation routine looks something like this:

...

Simulator<IO_Type>* sim = new Simulator<IO_Type>(my_model);

/**

* Register listeners with the Simulator to collect statistics

*

*/

while (sim->nextEventTime() < t_end)

sim->execNextEvent();

...

or this

...

Simulator<IO_Type>* sim = new Simulator<IO_Type>(my_model);

/**

73

http://www.openmp.org

* Register listeners with the Simulator to collect statistics

*

*/

sim->execUntil(t_end);

...

which does the same thing. The reason for this assumption is described in the section on limitations. Note,
however, that any Listeners you have registered with your Simulator instance will work normally)almost,
I’ll get to that).

Assuming you have code like the above, replace it with code like the following:

...

ParSimulator<IO_Type>* sim = new ParSimulator<IO_Type>(my_model);

/**

* Register listeners with the ParSimulator to collect statistics

*

*/

sim->execUntil(t_end);

...

This should work just like your previous code with the following caveats.
First, your models must not share variables; all information exchanged between models must occur via

events at their input and output. Also note that the order of items in the bags of input received by your
model may change from run to run, though the contents are guaranteed to be the same. Therefore, the
repeatability of your simulation runs depends on your models being insensitive to the order of elements in
their input bags.

Second, reports produced by your listeners may be formatted in ways you do not expect: for any individual
atomic model, the listing of state transitions and output events will be in time order. Across models, however,
this may not be the case. For an extreme example, suppose that you have two atomic models arranged as
follows: A-¿B. You may see all state transitions and output for A listed first, followed by all state transitions
and outputs for B. Most likely, these will be intermingled. Note too that the output reported for network
models may not be in its proper time order, though the output reported for its atomic components will be.

This latter effect is due to the fact that, while simulation of each model is done in the proper time order of
its events, the ParSimulator overlaps simulation of models whenever this is possible. In the above example,
it is possible to simulate model A without worrying about what B is doing because B never provides input
to A. The simulator (if properly configured, as is described next) will take advantage of this to simulate A
and B in parallel. Hence, we may see all of the output from A before we see anything for B. Once again,
however, all callbacks to registered Listeners for any particular model will be in the proper time order.

Note too that this implies that callbacks to your listeners may occur in parallel. In the above example, it
may be that the same listener receives concurrent notifications about a state change for model A and state
change for model B, or output from A and state change of B, or any such combination. It is imperative
therefore that the callbacks in your listeners be thread safe.

This implies also that your network models must have routing methods that are thread safe. This is
the case for the network models that are included with adevs. If you have implemented your own network
models, be sure that their route methods are thread safe as well.

Third, and most critical, your atomic components must implement the new lookahead method, which
is inherent from the Devs base class. This method must return a positive value subject to the guarantees
described in the next section on “Principles of the parallel simulator”. For the purposes of getting your
code to compile and run, your lookahead methods can simply return a very small value (i.e., something
positive but close to zero; say 1E-8 or 1E-9). In this case, your simulator should compile and (very slowly)
execute. Even if you have the patience to wait for it to complete, however, the outcome will likely be wrong.
Nonetheless, such a test will let you get your build environment setup properly.

The above changes are sufficient in most cases to make your existing, sequential simulator execute with
the parallel simulator. In summary, these mandatory steps are:

74

1. Replace your Simulator with a ParSimulator.

2. Use the ParSimulator’s execUntil method to advance time.

3. Make sure your Listeners are thread safe.

4. Make sure your Networks’ route methods are thread safe.

5. Implement the lookahead method for your Atomic models.

These steps alone are unlikely to yield an improvement in performance (or, indeed, correct results).
As a general rule, correctly speeding up your simulation requires that the ParSimulator be given specific
information about your model; information that only you can provide. Without this information, the syn-
chronization overhead incurred by the parallel simulation algorithm is staggeringly huge. The majority of
this document deals with the problem of creating fast and correctly executing simulations.

9.1 Limits of the parallel simulator

Before continuing any effort to make your simulator work with the algorithms used by the ParSimulator,
you should be aware of specific capabilities of the sequential simulator that the parallel simulator does not
support. These are:

1. Your compiler must support OpenMP.

2. The execNextEvent, computeNextState, and computeNextOutput methods are not provided. Only
the execUntil method is provided for advancing the simulation.

3. As noted above, callbacks to a Listener for each individual atomic model will be given in the proper
time order, but these may be arbitrarily interleaved with the callbacks for other atomic models.

4. Listener callbacks must be made thread safe using the OpenMP synchronization features.

5. The parallel simulator does not support models that change structure. If your models implement their
model transition methods, then you cannot use the parallel simulator at this time.

Beyond these purely technical limits, it should be noted that making effective use of this (or any) parallel
discrete event simulator is often difficult. Applications of practical interest require the identification of
lookahead for the model’s atomic components (described in the next section), partitioning of the model
amongst the available processors, and implementing code to enable the parallel simulator to take advantage
of your model’s lookahead and partitioning.

So while this guide addresses issues specific to using the adevs ParSimulator class, I strongly recommend
that, if you are not already intimately familiar with parallel simulation, that you obtain a book on the topic.
“Building Software for Simulation”, authored by James Nutaro (the author of this manual) and published
by Wiley in 2011, contains a chapter on conservative discrete event simulation with DEVS in general and
adevs in particular. You may find this book to be a useful introduction, though there are other excellent
texts on the subject.

9.2 Modifying your models to exploit lookahead

The ParSimulator takes advantage of a property intrinsic to many models: their strong causality. A model,
network or atomic, is strongly causal if its output can be predicted with certainty to some future time
without knowledge of its input. The length of time into the future for which this prediction can be made is
called lookahead.

To illustrate, consider a very simple, atomic model that acts as follows. In the absence of input, the
model neither changes state nor produces output: its time advance is infinite. Upon receiving an input, the

75

model retains it for exactly one unit of time and then expels it. So, for example, if the input to the system
is the series of letters ’A’, ’B’, and ’C’ at times 1, 2, and 3 respectively, the its output comprise ’A’, ’B’, and
’C’ at times 2, 3, and 4 respectively. If the model receives an input while in the process of transcribing, then
that input is discarded. So, for example, if ’A’, ’B’, and ’C’ arrive at times 2, 2.5, and 3 then the output
from the model is ’A’ and ’C’ at times 3 and 4.

Now observe that if I know the input to this model until some time t, then I can determine its output
until time t+1 and, to do this, I do not need to know its input in the interval from t to t+1. For instance,
suppose I know that the input at time zero is ’A’. Clearly, the only output of the model in the interval 0
to 1 (inclusive) is the value ’A’ at time 1. Moreover, suppose I know that the input at t=0 is ’A’ and that
there is no other input until at least time 0.5. In this case, I know that the output until (but not including)
time 1.5 consists only of ’A’ at time 1. Any input following time 0.5 cannot occur until, at its earliest, time
1.5. This model has a lookahead of 1. Given its input to time t, its output is fixed to time t+1. Output in
this interval does not depend on input in the same interval.

In network models, lookahead may accumulate. As an example, suppose that two transcribers are con-
nected in series. In this case, the lookahead of the composite is two; i.e., the sum of the lookaheads of the
components. If, however, a network model comprises two transcribers in parallel, then the lookahead of the
network is only one. Generally speaking, however, larger networks tend to have larger lookaheads, and large
lookahead is essential for getting good performance from the simulator.

To take advantage of lookahead in a model, the simulator must be told that it exists. This is done by
overriding the lookahead method of the Devs class. All atomic and network models inherit this method from
the Devs base class, and its default implementation is to return zero.

Lookahead is most useful to the simulator if it is coupled with a capability to actually calculate the
model’s outputs to this time. To calculate those outputs, however, requires knowledge of the intervening
states. An atomic model enable the simulator to project its output into the future by implementing two
method: beginLookahead and endLookahead.

The beginLookahead method is called to notify the model that further calculations of its outputs and state
transitions are speculative. The default behavior of the beginLookahead method is to throw an exception,
which notifies the simulator that this model does not support the projection of its output into the future.
An atomic model overriding this method must be capable of restoring its state variables to their follows at
the instant that beginLookahead was called. The endLookahead method is called by the simulator when it
is done projecting that model’s output. This method must restore the model to the same state it was in
when the beginLookahead method was called.

These methods are demonstrated by the Transcribe class shown below. This atomic model implements
the transcriber described above.

/**

* This model copies its input to its output following a

* delay.

*/

class Transcribe:

public adevs::Atomic<char>

{

public:

Transcribe():adevs::Atomic<char>(),ttg(DBL_MAX),to_transcribe(’ ’){}

void delta_int() { ttg = DBL_MAX; }

void delta_ext(double e, const adevs::Bag<char>& xb)

{

if (ttg == DBL_MAX)

{

ttg = 1.0;

// Find the largest input value

adevs::Bag<char>::const_iterator iter = xb.begin();

76

to_transcribe = *iter;

for (; iter != xb.end(); iter++)

{

if (to_transcribe < *iter) to_transcribe = *iter;

}

}

else ttg -= e;

}

void delta_conf(const adevs::Bag<char>& xb)

{

delta_int();

delta_ext(0.0,xb);

}

void output_func(adevs::Bag<char>& yb)

{

yb.insert(to_transcribe);

}

double ta() { return ttg; }

void gc_output(adevs::Bag<char>&){}

double lookahead() { return 1.0; }

void beginLookahead()

{

// Save the state

chkpt.ttg = ttg;

chkpt.to_transcribe = to_transcribe;

}

void endLookahead()

{

// Restore the state

ttg = chkpt.ttg;

to_transcribe = chkpt.to_transcribe;

}

char getMemory() const { return to_transcribe; }

private:

double ttg;

char to_transcribe;

struct checkpoint_t { double ttg; char to_transcribe; };

checkpoint_t chkpt;

};

A model comprising two transcribers connected in series could be defined as follows. Note that this
network model does not have the endLookahead and beginLookahead methods. State is a property of
atomic models only, and therefore only atomic models may implement these methods.

/**

* This model defines a pair of transcribers connected

* in series as shown: -> t1 -> t2 ->.

*/

class Series:

public adevs::Network<char>

{

public:

Series():

77

Network<char>(),

t1(),t2()

{

t1.setParent(this);

t2.setParent(this);

}

void getComponents(adevs::Set<adevs::Devs<char>*>& c)

{

c.insert(&t1);

c.insert(&t2);

}

void route(const char& x, adevs::Devs<char>* model,

adevs::Bag<adevs::Event<char> >& r)

{

adevs::Event<char> e;

e.value = x;

if (model == this) e.model = &t1;

else if (model == &t1) e.model = &t2;

else if (model == &t2) e.model = this;

}

double lookahead()

{

return t1.lookahead()+t2.lookahead();

}

private:

Transcribe t1, t2;

};

The above code examples illustrate all possible changes of your models - network and atomic - to facilitate
parallel simulation. Of these changes, only the lookahead method of the atomic model is actually required.
The ParSimulator calculates default (and very conservative) lookaheads for the Network models if these are
required. Atomic models that provide the endLookahead and beginLookahead methods may improve the
execution time of the simulation. But only the lookahead values of the atomic models (or their parents if
the model is partitioned by hand; see the next section) are actually required for correct execution of your
model.

9.3 Partitioning your model

Each thread in your simulator is assigned responsibility for the execution of a subset of the atomic components
of your model. Models within a thread are executed sequentially. Simulation of the models within a thread
proceeds just as with the sequential Simulator class. The threads execute in parallel, each stopping to
synchronize with its neighbors only as necessary to exchange essential information.

In an ideal partitioning of the model, each thread is assigned roughly the same number of models,
each model requires roughly the same amount of computational effort to simulate, and models assigned to
separate threads exchange inputs and outputs rarely or not at all. This is the ideal that you should strive
for in assigning your models to the threads of your simulation algorithm.

The actual assignment of a model to a thread is straightforward. Network and Atomic objects inherent
the setProc method from their Devs base class. To assign the model to a particular thread, pass the number
of that thread to the setProc method before the ParSimulator is created. Threads are numbered from 0 to
the maximum number of threads (i.e., OMP NUM THREADS) minus one.

As the ParSimulator setups the simulation, it will examine the thread to which each model is assigned
and take the following actions:

78

1. If the model’s parent is assigned to thread k, then the model is also assigned to thread k, regardless of
the argument passed to its setProc method.

2. If the model’s parent was not assigned to specific thread, then the model will be assigned to the thread
indicated by argument to its setProc method.

3. If neither the model nor its parent were assigned to a thread via the model’s setProc method, then it
is assigned to a thread selected at random.

This partitioning of the model tells the simulator how to distribute its computational workload. It does
not tell the simulator which parts of the workload talk to which others. For example, if half of your model
is assigned to thread 0 and the other half to thread 1, the simulator does not yet know if the model’s in 0
send input to the models in 1, vice versa, or both. Without further information, the simulator will therefore
assume that every thread contains models that must communicate with all other threads. This is the most
conservative assumption, and carries with it a substantial synchronization overhead.

If you know something about how the models assigned to the thread communicate, then you can provide
this information to the simulator. This is done by passing and LpGraph object to the constructor of the
ParSimulator. The LpGraph is nothing more than a directed graph, and the presence of an edge from node
k to node j indicates that the models for thread k send input to the models in thread j. Absence of an edge
indicates no flow of information along the missing edge. An edge is added by calling addEdge(A,B) to create
an edge from thread A to thread B.

The following snippet of code illustrates the partitioning procedure. This segment of code creates the
block diagram model shown in Fig. 9.1. This model consists of two atomic components, A and B, and a
network with two components C1 and C2. The model A is assigned to thread 0, B to thread 1, and the
network C with its components C1 and C2 to thread 2. With this partition, thread 0 sends input to thread
1, thread 1 sends input to thread 2, and thread 2 to thread 0.

ModelA* A = new ModelA();

ModelB* B = new ModelB();

NetworkModelC* C = new NetworkModelC();

SimpleDigraph<IO_Type>* model = new SimpleDigraph<IO_Type>();

model.add(A);

model.add(C);

model.add(B);

model.couple(A,B);

model.couple(B,C);

model.couple(C,A);

A.setProc(0);

B.setProc(1);

C.setProc(2);

LpGraph lpg;

lpg.addEdge(0,1);

lpg.addEdge(1,2);

lpg.addEdge(2,3);

ParSimulator<IO_Type> sim(model,lpg);

9.4 Interaction between partitioning and lookahead

The following rules dictate which models must provide positive lookahead.

1. An atomic model whose parent is not assigned to a specific thread must provide a positive lookahead.

2. A network that is assigned to a specific thread, but whose parent is not, must provide a positive
lookahead.

79

C2

C1

BA

C

Thread 0 Thread 1 Thread 2

Figure 9.1: Partitioning a model for simulation on three processors.

3. No other model is required to provide a positive lookahead, or indeed any lookahead at all. The
simulator will not use lookahead values provided by models except as indicated in cases 1 and 2 above.

9.5 A complete example

This example builds and simulates the network shown in Fig. 9.1 using the Transcribe model for components
B, C1, and C2; a SimpleDigraph for the network C, and the following network for component A.

The network that is component A has two sub-components: a generator and a transcriber. Input to
the network goes to the generator; output from the generator goes to the transcriber; and output from the
transcriber becomes an output from the network. The generator operates as follows. It produces output
at regular intervals of 1/2 units of time until it receives an input. At that time it stops. Note that the
lookahead of the generator is zero because its pending output may be canceled at any time. The lookahead
of the network, however, is one. That is, the lookahead of the network is the sum of its series components.

A Listener is constructed for this model that records the state and output trajectories of every component.
Observe two facts concerning the listener. First, it has been made thread safe by the critical section placed
around writes to standard output. Second, it reports state and output trajectories for each atomic model in
proper time order, but interleaves the trajectories of these models with each other. This second point will
be apparent when we execute the simulation.

The complete implementation of the model, listener, and simulator are shown below.

#include "Transcribe.h"

#include "Genr.h"

#include "adevs.h"

#include <iostream>

using namespace adevs;

using namespace std;

/**

* Extend the SimpleDigraph class to allow its lookahead

* to be set manually.

*/

class SimpleDigraphWithLookahead:

public SimpleDigraph<char>

80

{

public:

SimpleDigraphWithLookahead():

SimpleDigraph<char>(),

look_ahead(0.0)

{

}

void setLookahead(double look_ahead)

{

this->look_ahead = look_ahead;

}

double lookahead() { return look_ahead; }

private:

double look_ahead;

};

/**

* Listener to record the output and state trajectories of the

* component models.

*/

Genr* A_g;

Transcribe *A_t, *B, *C1, *C2;

SimpleDigraphWithLookahead *A, *C;

class Listener:

public EventListener<char>

{

public:

Listener(){}

void outputEvent(Event<char> y, double t)

{

string which = which_model(y.model);

#pragma omp critical

cout << which << " @ t = " << t << ", y(t)= " << y.value << endl;

}

void stateChange(Atomic<char>* model, double t)

{

if (model == A_g)

#pragma omp critical

cout << which_model(A_g) << " @ t = " << t << ", running= "

<< A_g->isRunning() << ", next output= " <<

A_g->getNextOutput() << endl;

else if (model == A_t)

#pragma omp critical

cout << which_model(A_t) << " @ t = " << t << ", memory= "

<< A_t->getMemory() << ", ta()= " <<

A_t->ta() << endl;

else if (model == C1)

#pragma omp critical

cout << which_model(C1) << " @ t = " << t << ", memory= "

<< C1->getMemory() << ", ta()= " <<

C1->ta() << endl;

81

else if (model == C2)

#pragma omp critical

cout << which_model(C2) << " @ t = " << t << ", memory= "

<< C2->getMemory() << ", ta()= " <<

C2->ta() << endl;

else if (model == B)

#pragma omp critical

cout << which_model(B) << " @ t = " << t << ", memory= "

<< B->getMemory() << ", ta()= " <<

B->ta() << endl;

else assert(false);

}

private:

string which_model(Devs<char>* model)

{

if (model == A_g) return "A.A_g";

if (model == A_t) return "A.A_t";

if (model == A) return "A";

if (model == B) return "B";

if (model == C1) return "C.C1";

if (model == C2) return "C.C2";

if (model == C) return "C";

assert(false);

return "";

}

};

int main(int argc, char** argv)

{

// Component A

A_g = new Genr();

A_t = new Transcribe();

A = new SimpleDigraphWithLookahead();

A->setLookahead(A_t->lookahead()+A_g->lookahead());

A->add(A_g);

A->add(A_t);

A->couple(A,A_g); // A -> A_g

A->couple(A_g,A_t); // A_g -> A_t

A->couple(A_t,A); // A_t -> A

A->setProc(0); // Assign to thread zero

// Component B

B = new Transcribe();

B->setProc(1); // Assign to thread one

// Component C

C1 = new Transcribe();

C2 = new Transcribe();

C = new SimpleDigraphWithLookahead();

C->setLookahead(C1->lookahead()+C2->lookahead());

C->add(C1);

C->add(C2);

C->couple(C,C1); // C -> C1

C->couple(C2,C); // C2 -> C

82

C->couple(C1,C2); // C1 -> C2

C->couple(C2,C1); // C2 -> C1

C->setProc(2); // Assign to thread two

// Create the overarching model

SimpleDigraph<char>* model = new SimpleDigraph<char>();

model->add(A);

model->add(B);

model->add(C);

model->couple(A,B);

model->couple(B,C);

model->couple(C,A);

// Create the corresponding LPGraph

LpGraph lpg;

lpg.addEdge(0,1);

lpg.addEdge(1,2);

lpg.addEdge(2,0);

// Create the simulator

ParSimulator<char>* sim = new ParSimulator<char>(model,lpg);

// Register the listener

Listener* listener = new Listener();

sim->addEventListener(listener);

// Run the simulation until t=10

sim->execUntil(10.0);

// Cleanup and exit

delete sim;

delete listener;

delete model;

return 0;

}

A subset of the output produced by the simulator is shown below. The intermingling of reported events
in time is immediately apparent.

...

C.C2 @ t = 7.5, y(t)= G

C @ t = 7.5, y(t)= G

C.C1 @ t = 7.5, y(t)= I

C.C2 @ t = 7.5, memory= I, ta()= 1

C.C1 @ t = 7.5, memory= G, ta()= 1

C.C1 @ t = 8.5, y(t)= G

C.C2 @ t = 8.5, y(t)= I

C @ t = 8.5, y(t)= I

C.C1 @ t = 8.5, memory= I, ta()= 1

C.C2 @ t = 8.5, memory= G, ta()= 1

A.A_g @ t = 7.5, running= 0, next output= I

A.A_g @ t = 8.5, running= 0, next output= I

A.A_g @ t = 9.5, running= 0, next output= I

C.C1 @ t = 9.5, y(t)= I

C.C2 @ t = 9.5, y(t)= G

C @ t = 9.5, y(t)= G

C.C1 @ t = 9.5, memory= G, ta()= 1

C.C2 @ t = 9.5, memory= I, ta()= 1

...

83

However, a search for just the events for model C1 gives the expected result: all of its events are listed in
their proper time order. Specifically, the command ’grep C2 output’, where ’output’ is the result of the
simulation, yields the following:

C.C2 @ t = 3.5, memory= A, ta()= 1

C.C2 @ t = 4.5, y(t)= A

C.C2 @ t = 4.5, memory= C, ta()= 1

C.C2 @ t = 5.5, y(t)= C

C.C2 @ t = 5.5, memory= E, ta()= 1

C.C2 @ t = 6.5, y(t)= E

C.C2 @ t = 6.5, memory= G, ta()= 1

C.C2 @ t = 7.5, y(t)= G

C.C2 @ t = 7.5, memory= I, ta()= 1

C.C2 @ t = 8.5, y(t)= I

C.C2 @ t = 8.5, memory= G, ta()= 1

C.C2 @ t = 9.5, y(t)= G

C.C2 @ t = 9.5, memory= I, ta()= 1

So too for the output of model ’A g’, which is shown below:

A.A_g @ t = 0.5, y(t)= A

A.A_g @ t = 0.5, running= 1, next output= B

A.A_g @ t = 1, y(t)= B

A.A_g @ t = 1, running= 1, next output= C

A.A_g @ t = 1.5, y(t)= C

A.A_g @ t = 1.5, running= 1, next output= D

A.A_g @ t = 2, y(t)= D

A.A_g @ t = 2, running= 1, next output= E

A.A_g @ t = 2.5, y(t)= E

A.A_g @ t = 2.5, running= 1, next output= F

A.A_g @ t = 3, y(t)= F

A.A_g @ t = 3, running= 1, next output= G

A.A_g @ t = 3.5, y(t)= G

A.A_g @ t = 3.5, running= 1, next output= H

A.A_g @ t = 4, y(t)= H

A.A_g @ t = 4, running= 1, next output= I

A.A_g @ t = 4.5, y(t)= I

A.A_g @ t = 4.5, running= 0, next output= I

A.A_g @ t = 5.5, running= 0, next output= I

A.A_g @ t = 6.5, running= 0, next output= I

A.A_g @ t = 7.5, running= 0, next output= I

A.A_g @ t = 8.5, running= 0, next output= I

A.A_g @ t = 9.5, running= 0, next output= I

So the individual traces for these components appear in the proper order in the output, but they are
intermingled in an arbitrary way.

9.6 Memory management of input and output across thread bound-
aries

Because the atomic moels in a simulator are executed at different rates, it often happens that an output
object produced by a model in one thread will be used as some later time by models in other threads. To

84

manage the memory associated with these objects, it is necessary for the simulator to be able to determine
when any such object can be safely deleted. This is done most easily when every thread has its own copy of
the object, and the MessageManager interface is used by the simulator for this purpose.

If your input and output types are primitive objects (ints, chars, etc.) or simple structures, then the
default approach to memory management is sufficient. Indeed, this memory manager should be sufficient for
any types of objects for which the compiler’s default copy constructor and assignment operator create deep
copies. If you are passing pointers to complex objects or objects that use their own internal scheme for man-
aging memory (e.g., that use copy on write semantics, reference counting, etc.), then you will need to build
a custom memory manager. The MessageManager is used for this purpose, and a custom MessageManager
is provided to your ParSimulator as the final argument to its constructor.

The MessageManager has two pure virtual methods that must be overridden by its specialization. The
first is the clone methods, which has the signature

X clone(X& value)

where X is the type of object that your simulator uses for input and output. This method must make a
deep copy of the object value and return that copy to the caller via the return value. The second method is
destroy, and it has the signature

void destroy(X& value)

where X is as before. This method must free the memory associated with the value.
The implementation of the default memory manager is as follows:

template <typename X> class NullMessageManager:

public MessageManager<X>

{

public:

/// Uses the objects default copy constructor

X clone(X& value) { return value; }

/// Takes no action on the value

void destroy(X& value){}

};

To illustrate the construction of a new MessageManager, the implementation below is for a model that uses C
style strings (i.e., null terminate arrays of characters) for its input and output. The clone method allocated
memory for a string and the copies to it the contents of the value string. The destroy method frees the
memory allocated for the string.

class CStringMessageManager:

public adevs::MessageManager<char*>

{

public:

char* clone(char* & value)

{

char* new_string = new char[strlen(value)];

strcpy(new_string,value);

return new_string;

}

void destroy(char* & value)

{

delete [] value;

}

};

85

If this message manager were to be supplied to the simulator in the example of the previous section, then
the ParSimulator would be constructed as follows:

. . .

CStringMessageManager* msg_mngr = new CStringMessageManager();

ParSimulator<char*>* sim = new ParSimulator<char*>(model,lpg,msg_mngr);

. . .

The simulator would then use the supplied message manager to manage input and output objects that must
exist simultaneously in the simulators many threads.

9.7 Summary of main points regarding repeatable outcomes and

performance

If your model and simulator have been setup properly then the outcomes produced by the parallel and
sequential simulators will be identical. To this end, keep the following rules in mind:

1. Models must not shared variables.

2. The state transition functions of your models must not depend on the order of items in their input
bag.

3. Listeners must be thread safe.

4. Listeners must not expect events to be reported in a global time order. Only the events associated with
individual atomic models will be reported in their proper order; all other events will be interleaved in
time.

In general you should not expect to speedup relatively small simulations by use of the parallel simulator.
Rather, its purpose is chiefly to enable your model to grow in its size, complexity, or both without a
corresponding increase in execution time. With this in mind, to achieve good execution times with the
parallel simulation requires the following:

1. The size of the model must be sufficient to keep all of your processors busy all of the time with useful
work. Moreover, the amount of useful work to be done by each processor must substantially exceed
the overhead of parallel simulation algorithm.

2. Your model must have parallelism that the parallel algorithm can exploit. In practice, this means
that your model must be partitioned to both maximize the lookahead of the network assigned to each
processor and to minimize the communication between processors.

86

Chapter 10

Models with Many Input/Output
Types

It would be surprising if every component in a large model (or even a small one) had the same input and
output requirements. Some models can be satisfactorily constructed with a single type of input/output
object and, if this is the case, it will simplify the design of your simulator. If not, you’ll need to address this
problem when you design your simulation program.

One solution to this problem is to establish a base class for all input and output types and derive specific
types from the common base. The simulator and all of its components exchange pointers to the base class
and down cast specific objects as needed. The C++ dynamic cast operator is particularly useful for this
purpose. Although it is not without its problems, I have used this solution in many designs and it works
well.

It is not always possible for every component in a model to share a common base class for its input
and output type. This can happen if different sub-model have very different input and output needs or
when models from earlier projects are reused. For example, to use a CellSpace model as a component of a
Digraph model requires some means of converting the CellSpace’s CellEvent objects into the PortValue
objects required by the Digraph. Happily, there is a simple solution to this problem that makes clever use
of the Simulator and EventListener classes to wrap a model with one input and output type inside of an
atomic model with a different input and output type.

The Adevs ModelWrapper class is an Atomic model that encapsulates another model. The encapsu-
lated model can be a Network or Atomic model. The ModelWrapper uses input/output objects of type
ExternalType, but the encapsulated class uses input/output objects of type InternalType. Two abstract
methods are provided for converting objects with one type into objects with the other type; these methods
are

void translateInput(const Bag<ExternalType>& external_input, Bag<Event<InternalType> >& internal_input)

void translateOutput(const Bag<Event<InternalType> >& internal_output, Bag<ExternalType>& external_output)

Clean up of converted objects are managed with the gc output method, which is inherited from the Mod-
elWrapper’s Atomic base class, and a new gc input method for cleaning up objects created by the
translateInput method; its signature is

void gc_input(Bag<Event<InternalType> >& g)

The model to encapsulate is passed to the ModelWrapper constructor. The ModelWrapper creates
a Simulator for the model that is used to control its evolution; the ModelWrapper is a simulator inside
of a model inside of a simulator! The ModelWrapper keeps track of the wrapped model’s last event
time, and it uses this information and the Simulator’s nextEventTime method to compute its time
advance. Internal, external, and confluent events cause the WrappedModel to invoke its Simulator’s

87

computeNextState method and thereby advance the state of the wrapped model. Internal events are
simplest; the computeNextState method is invoked with the wrapped model’s next event time and an
empty input bag.

The delta conf and delta ext , however, must convert the incoming input events, which have the type
ExternalType, into input events for the wrapped model, which have the type InternalEvent. This is accom-
plished with the translateInput method. The first argument to the method is the input bag passed to
the ModelWrapper’s delta ext or delta conf method. The second argument is an empty bag that the
method implementation must fill. When the translateInput method returns this bag will be passed to the
computeNextState method of the ModelWrapper’s simulator. Notice that the internal input argument
is a Bag filled with Event objects; if the wrapped model is a Network then the translated events can be
targeted at any of the Network’s components. The ModelWrapper invokes the gc input method when
it is done with the events in the internal input bag. This gives you the opportunity to delete objects that
you created when translateInput was called.

A similar process occurs when the ModelWrapper’s output func is invoked, but in this case it is
necessary to convert output objects from the wrapped model, which have type InternalType, to output
objects from the ModelWrapper, which have type ExternalType. This is accomplished by invoking the
translateOutput method. The method’s first argument is the bag of output events produced collectively
by all of the wrapped model’s components; notice that the contents of the internal output bag are Event
objects. The model field points to the component of the wrapped model (or the wrapped model itself)
that produced the event and the value field contains an output object produced by that model. These
Events must be converted to objects of type ExternalType and stored in the external output bag. The
external output bag is, in fact, the bag passed to the wrapper’s output func, and so its contents become
the output objects produced by the wrapper. The gc output method is used in the usual way to clean up
any objects created by this process.

The Wrapper class shown below illustrates how to use the Adevs WrapperModel class. The Wrapper
is derived from the WrapperModel and implements its four abstract methods: translateInput , trans-
lateOutput , gc input , and gc output . This class wraps an Atomic model that uses int* objects as its
input/output. The Wrapper uses C strings as its input and output type. The translation methods merely
convert integers to strings and vice versa. The Wrapper can be used just like any Atomic model; it can
be a component in a network model or simulated by itself. The behavior of the Wrapper is identical to the
model it wraps; the only change is in the interface.

// This class converts between char* and int* event types.

class Wrapper: public adevs::ModelWrapper<char*,int*> {

public:

Wrapper(adevs::Atomic<int*>* model):

// Pass the model to the base class constructor

adevs::ModelWrapper<char*,int*>(model){}

void translateInput(const adevs::Bag<char*>& external,

adevs::Bag<adevs::Event<int*> >& internal) {

// Iterate through the incoming events

adevs::Bag<char*>::const_iterator iter;

for (iter = external.begin(); iter != external.end(); iter++) {

// Convert each one into an int* and send it to the

// wrapped model

adevs::Event<int*> event;

// Set the event value

event.value = new int(atoi(*iter));

// Set the event target

event.model = getWrappedModel();

// Put it into the bag of translated objects

internal.insert(event);

88

}

}

void translateOutput(const adevs::Bag<adevs::Event<int*> >& internal,

adevs::Bag<char*>& external) {

// Iterate through the incoming events

adevs::Bag<adevs::Event<int*> >::const_iterator iter;

for (iter = internal.begin(); iter != internal.end(); iter++) {

// Convert the incoming event value to a string

char* str = new char[100];

sprintf(str,"%d",*((*iter).value));

// Put it into the bag of translated objects

external.insert(str);

}

}

void gc_output(adevs::Bag<char*>& g) {

// Delete strings allocated in the translateOutput method

adevs::Bag<char*>::iterator iter;

for (iter = g.begin(); iter != g.end(); iter++)

delete [] *iter;

}

void gc_input(adevs::Bag<adevs::Event<int*> >& g) {

// Delete integers allocated in the translateInput method

adevs::Bag<adevs::Event<int*> >::iterator iter;;

for (iter = g.begin(); iter != g.end(); iter++)

delete (*iter).value;

}

};

89

90

Chapter 11

Random Numbers

Adevs has two classes that work together to generate many types of random numbers. These two classes
are the random seq class and the rv class. The random seq class provides uniformly distributed random
numbers to the rv class, and the rv transforms this uniform stream of random numbers into a variety of
random number distributions.

The random seq class is an interface for a random number generator. Its derived classes produce
uniformly distributed pseudo-random numbers. The underlying random number stream is accessed with
two methods. The next long returns a raw random number as an unsigned long. The next dlb refines
the next long method by reducing the raw random number to a double precision number in the interval
[0, 1]. The random number sequence is initialized with the set seed method, and the entire random number
generator can be copied with the copy method. To summarize, the random seq class has four abstract
methods

void set_seed(unsigned long seed)

double next_dbl()

random_seq* copy() const

unsigned long next_long()

that must be implemented by any derived class.
Adevs comes with two implementations of the random seq class: the crand class and the mtrand class.

The crand class uses the rand function from the standard C library to implement the required methods. Its
implementation is trivial; I’ve listed it below as an example of how to implement the random seq interface.

class crand: public random_seq {

public:

/// Create a generator with the default seed

crand(){}

/// Create a generator with the given seed

crand(unsigned long seed) { srand (seed); }

/// Set the seed for the random number generator

void set_seed(unsigned long seed) { srand (seed); }

/// Get the next double uniformly distributed in [0, 1]

double next_dbl() { return (double)rand()/(double)RAND_MAX; }

/// Copy the random number generator

unsigned long next_long() { return (unsigned long)rand(); }

random_seq* copy() const { return new crand (); }

/// Destructor

~crand(){}

};

91

The mtrand class implements the Mersenne Twister random number generator1. The code is based on
their open source implementation of the Mersenne Twister. Aside from its potential advantages as a random
number generator, the mtrand class differs from the crand class by its ability to make deep copies; every
instance of the mtrand class has its own random number stream.

The rv class uses the uniform random numbers provided by a random seq object to produce several dif-
ferent random number distributions: triangular, uniform, normal, exponential, lognormal, Poisson, Weibull,
binomial, and many others. Every instance of the rv class is created with a random seq; the default is an
mtrand object, but any type of random seq object can be passed to the rv constructor. The different
random distributions are sampled by calling the appropriate method: triangular for a triangular distribu-
tion, exponential for an exponential distribution, poisson for a Poisson distribution, etc. Adevs is open
source software; if a new distribution is needed then you can add a method that implements it to the rv
class (and, I hope, contribute the expansion to the Adevs project).

1M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random

Number Generator”, ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pgs. 3-30.

92

Chapter 12

Interpolation

Data is often made available as a set of tabulated points. Hourly temperature data, millisecond samples
of a voltage signal in an electric circuit, and a minute by minute record of a radar track are examples of
continuous signals recorded at discrete points in time. But if you need temperate data every half hour,
the circuit voltage a fractions of a millisecond, or track information at quarter minutes then a method for
approximating values between tabulated points will be very useful. The InterPoly class exists for this
purpose.

The InterPoly class approximates smooth continuous signal by fitting a polynomial to the available
data points. The approximating polynomial is guaranteed to pass through every available data point, and in
many cases it provides a reasonable approximation to the original signal between the available data points.
The most familiar example of an interpolating polynomial is a line that connects two data points (t1, x1)
and (t2, x2); the connecting line is

p(t) =
t − t2
t1 − t2

x1 +
t − t1
t2 − t1

x2

and it is easy to check that p(t1) = x1 and p(t2) = x2. If more data points are available then quadratic, cubic,
quartic, and even higher degree polynomials can be used to obtain (in principle) better approximations.

An interpolating polynomial can be constructed with the InterPoly class in three ways. The first way
is to provide the sample data to the InterPoly constructor

InterPoly(const double* u, const double* t, unsigned int n)

where u is an array of data values,t is an array of associated time points, and n is the number of data points
(i.e., the size of the u and t array). The constructor will build an n − 1 degree polynomial that fits the
supplied data. The second way is supply just the data values, a time step, the first time value, and number
of data points to the constructor

InterPoly(const double* u, double dt, unsigned int n, double t0 = 0.0)

where u is an array of data values, dt is the time spacing of the data points, n is the number of data points,
and t0 is the time instant of the first data point (i.e., the data point i is at time t0 + i ·dt). Both constructors
make copies of the supplied arrays, and changes to the array values will not be reflected by the InterPoly
object. The third way is to assign new data point values to an existing polynomial by calling the InterPoly
method

void setData(const double* u, const double* t = NULL)

where u is the new set of data values and t is (optionally) the new set of time points. This method requires
that the number of data points in u (and t if used) be equal to the number of points supplied to the InterPoly
constructor.

There are three methods for computing interpolated values: the interpolate method, the overloaded
operator(), and the derivative method. The method signatures are listed below:

93

double interpolate(double t) const

double operator()(double t) const

double derivative(double t) const

The interpolate method and operator() give the value of the interpolating polynomial at the time point
t. The derivative method gives the value of the first time derivative of the interpolating polynomial as an
approximation of the first time derivative of the original function. For example, if the data describes the
position of an object through time then the derivative method gives and approximation of the object’s
velocity.

To demonstrate the InterPoly class and give you a sense of what the interpolating polynomials look like,
I’ve listed below a program that computes sin(t), its time derivative cos(t), and interpolated approximations
of both. Interpolating polynomials built with 4, 5, and 6 data point in the interval [0, 2π] are illustrated in
Figs. 12.1 and 12.2. The quality of the approximation generally improves as more data points are added,
but the function and interpolating polynomial diverge significantly outside of the interval spanned by the
data points. Be careful if you extrapolate!

#include "adevs.h"

#include <cmath>

#include <iostream>

using namespace std;

int main(int argc, char** argv) {

// Get the number of data points to use and allocate

// memory for the data points arrays

int N = atoi(argv[1]);

double* t = new double[N];

double* u = new double[N];

// Compute data points using the sin function

for (int i = 0; i < N; i++) {

t[i] = i*(2.0*3.14159/(N-1));

u[i] = sin(t[i]);

}

// Create the interpolating polynomial

adevs::InterPoly p(u,t,N);

// The data arrays can be deleted now

delete [] t; delete [] u;

// Compute several points with sin, its derivative, and the polynomial

// inside and a little beyond the interval spanned by the data

for (double t = 0; t < 2.0*3.14159+0.5; t += 0.01)

cout << t

<< " " << sin(t) << " " << p(t)

<< " " << cos(t) << " " << p.derivative(t)

<< endl;

// Done

return 0;

}

94

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

t

sin(t)
4 points
5 points
6 points

Figure 12.1: The function sin(t) and some interpolating polynomials with data spanning the interval [0, 2π].

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

t

cos(t)
4 points
5 points
6 points

Figure 12.2: The time derivative of sin(t) and the time derivative of some interpolating polynomials with
data spanning the interval [0, 2π].

95

	About this manual
	Building and Installing
	Modeling and simulation with Adevs
	Atomic Models
	Network Models
	Parts of a Network Model
	Simulating a Network Model
	A complete example of a network model
	Digraph Models
	Cell Space Models

	Variable Structure Models
	Building and Simulating Variable Structure Models
	A Variable Structure Example

	Continuous Models
	Differential equation modeling with the ode_system class
	Modeling hybrid systems with adevs and OpenModelica

	The Simulator Class
	Simulation on multi-core computers
	Limits of the parallel simulator
	Modifying your models to exploit lookahead
	Partitioning your model
	Interaction between partitioning and lookahead
	A complete example
	Memory management of input and output across thread boundaries
	Summary of main points regarding repeatable outcomes and performance

	Models with Many Input/Output Types
	Random Numbers
	Interpolation

