Theoretical Study of Strongly Correlated Electron Systems
Satoshi Okamoto Oak Ridge National Laboratory
What's new
New Our paper about the microcanonical Lanczos method to compute dynamical spectral functions was published on Phys. Rev. E (April 20, 2018).
New Our review article about transition-metal oxide (111) bilayers was published on J. Phys. Soc. Jpn. (Jan. 26, 2018). This paper is a contribution to Special Topics: New ab initio Approaches to Exploring Emergent Phenomena in Quantum Matter.
Our paper about the magnetic property of spinel CoV2O4 was published on Scientific Reports (Dec. 7, 2017).
Our paper about the electronoc property of SrRu2O6 was published on Scientific Reports (Sep. 13, 2017).
• Minor renewal (Sep. 1, 2017)

Welcome to the homepage of Satoshi Okamoto.

I am a condensed-matter theorist. I have been working on strongly-correlated electron systems in the form of bulk and artificial heterostructures. For a many-body problem, an exact solution is almost impossible to find except for some special cases. Therefore, in many cases one has to employ some kind of approximation depending on the problem. I use a variety of techniques ranging from numerical ones to analytical ones. These include Hartee-Fock approximation, auxiliary-particle methods (slave boson, slave fermion and Schwinger boson), spin-wave expansion, static and dynamical mean field methods, bosonization, and also density functional theory. My interest is still growing, covering superconductivity, magnetism, and transport properties of the strongly-correlated systems. So, essentially, I'm interested in all the novel phenomena caused by the strong correlations.

ResearcherID GoogleScholar ResearchGate LinkedIn LinkedIn

Selected Publications

  1. S. Okamoto and D. Xiao, “Transition-Metal Oxide (111) Bilayers,” J. Phys. Soc. Jpn. 87, 041006 (2018). Special Topics: New ab initio Approaches to Exploring Emergent Phenomena in Quantum Matter.
  2. S. Okamoto, J. Nichols, C. Sohn, S. Y. Kim, T. W. Noh, and H. N. Lee, “Charge Transfer in Iridate-Manganite Superlattices,” Nano Lett. 17, 2126 (2017).
  3. Z. Qiu, J. Li, D. Hou, E. Arenholz, A. T. N’Diaye, A. Tan, K. Uchida, K. Sato, S. Okamoto, Y. Tserkovnyak, Z. Q. Qiu, and E. Saitoh, “Spin-current probe for phase transition in an insulator,” Nat. Commun. 7, 12670 (2016).
  4. S. Okamoto, “Spin injection and spin transport in paramagnetic insulators,” Phys. Rev. B 93, 064421 (2016). Editors' Suggestion
  5. S. Okamoto, W. Zhu, Y. Nomura, R. Arita, D. Xiao, and N. Nagaosa, “Correlation effects in (111) bilayers of perovskite transition-metal oxides,” Phys. Rev. B 89, 195121 (2014).
  6. E. Assmann, P. Blaha, R. Laskowski, K. Held, S. Okamoto, and G. Sangiovanni, “Oxide Heterostructures for Efficient Solar Cells,” Phys. Rev. Lett. 110, 078701 (2013).
  7. S. Okamoto, “Doped Mott Insulators in (111) Bilayers of Perovskite Transition-Metal Oxides with the Strong Spin-Orbit Coupling,” Phys. Rev. Lett. 110, 066403 (2013).
  8. S. Okamoto, “Strongly-Correlated Heterostructures,” in Multifunctional Oxide Heterostructures, Eds. E. Y. Tsymbal, E. R. A. Dagotto, C.-B. Eom, and R. Ramesh (Oxford University Press, 2012), p.214-253, ISBN: 978-0-19-958412-3.
  9. D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, “Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures,” Nat. Commun. 2, 596 (2011).
  10. J. Salafranca and S. Okamoto, “Unconventional proximity effect and inverse spin-switch behavior in a model manganite-cuprate-manganite trilayer system,” Phys. Rev. Lett. 105, 256804 (2010).
  11. S. Okamoto, D. Sénéchal, M. Civelli, and A.-M. Tremblay, “Dynamical electronic nematicity from Mott physics,” Phys. Rev. B 82, 180511(R) (2010).Editors' Suggestion
  12. S. Okamoto, “Magnetic interaction at an interface between manganite and other transition-metal oxides,” Phys. Rev. B 82, 024427 (2010).
  13. P. Yu, J.-S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C.-H. Yang, Q. He, J. X. Zhang, S.Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y.-H. Chu, D. A. Arena, C.-C. Kao, L.W. Martin, and R. Ramesh, “Interface Ferromagnetism and Orbital Reconstruction in BiFeO3-La0.7Sr0.3MnO3 Heterostructure,” Phys. Rev. Lett. 105, 027201 (2010).
  14. K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S. Aizaki, A. Fujimori, and M. Oshima, “Dimensional-Crossover-Driven Metal-Insulator Transition in SrVO3 Ultrathin Films,” Phys. Rev. Lett. 104, 147601 (2010).
  15. S. Okamoto and T. A. Maier, “Enhanced Superconductivity in Superlattices of High-Tc Cuprates,” Phys. Rev. Lett. 101, 156401 (2008).
  16. S. Okamoto, “Nonlinear Transport through Strongly Correlated Two-Terminal Heterostructures: A Dynamical Mean-Field Approach,” Phys. Rev. Lett. 101, 116807 (2008).
  17. S. Okamoto, A. J. Millis, and N. A. Spaldin, “Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices,” Phys. Rev. Lett. 97, 056802 (2006).
  18. S. Okamoto and A. J. Millis, “Spatial inhomogeneity and strong correlation physics: A dynamical mean-field study of a model Mott-insulator-band-insulator heterostructure,” Phys. Rev. B 70, 241104(R) (2004).
  19. S. Okamoto and A. J. Millis, “Electronic reconstruction at an interface between a Mott insulator and a band insulator,” Nature (London) 428, 630 (2004).
Satoshi Okamoto, Complex Collective Materials Phenomena Team, Materials Theory Group,
Materials Science and Technology Division, Oak Ridge National Laboratory
PO Box 2008 MS6114, Oak Ridge, TN 37831, USA
Fax: +1 865-576-4944