Theoretical Study of Strongly Correlated Electron Systems
Satoshi Okamoto Oak Ridge National Laboratory
What's new
New Our paper about highly strained SrCoO3 thin films was published on Phys. Rev. X. (May 7, 2020).
New Our paper about (LaTiO3)1/(SrTiO3)5 heterostructure studied by diffusion quantum Monte Carlo was published on J. Chem. Theory Comput. (Jan. 14, 2020).
New Pontus' paper about α-RuCl3 was published on npj Quantum Mater. (Jan. 10, 2020).
Our paper about LaCoO3 studied by diffusion quantum Monte Carlo was published on Phys. Rev. Materials (Dec. 26, 2019).
Our paper about the kagome layer compound FeSn was published on Phys. Rev. Materials (Nov. 25, 2019).

Welcome to the homepage of Satoshi Okamoto.

I am a condensed-matter theorist. I have been working on strongly-correlated electron systems in the form of bulk crystals or artificial heterostructures, such as unconventional superconductivity, magnetism, and electronic transport. For correlated systems, an exact solution is almost impossible to find except for some special cases. Therefore, in many cases, some kind of approximation has to be employed depending on the problem. I use a variety of techniques ranging from analytical ones to numerical ones. These include Hartee-Fock approximation, auxiliary-particle methods (slave boson, slave fermion and Schwinger boson), spin-wave expansion, bosonization, density functional theory, dynamical mean field theory, and exact diagonalization methods. My interest is still growing, covering spin liquids, spin transport, and topological properties of the strongly-correlated systems.

GoogleScholar ResearchGate LinkedIn LinkedIn

Selected Publications

  1. P. Laurell and S. Okamoto, “Dynamical and thermal magnetic properties of the Kitaev spin liquid candidate α-RuCl3,” npj Quantum Mater. 5, 2 (2020).
  2. S. Okamoto, T. Egami, and N. Nagaosa, “Critical spin fluctuation mechanism for the spin Hall effect,” Phys. Rev. Lett. 123, 196603 (2019).
  3. N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao, “Stacking-dependent magnetism in bilayer CrI3,” Nano Lett. 18, 7658 (2018).
  4. S. Okamoto and D. Xiao, “Transition-metal oxide (111) bilayers,” J. Phys. Soc. Jpn. 87, 041006 (2018). Special Topics: New ab initio Approaches to Exploring Emergent Phenomena in Quantum Matter.
  5. S. Okamoto, J. Nichols, C. Sohn, S. Y. Kim, T. W. Noh, and H. N. Lee, “Charge transfer in iridate-manganite superlattices,” Nano Lett. 17, 2126 (2017).
  6. Z. Qiu, J. Li, D. Hou, E. Arenholz, A. T. N’Diaye, A. Tan, K. Uchida, K. Sato, S. Okamoto, Y. Tserkovnyak, Z. Q. Qiu, and E. Saitoh, “Spin-current probe for phase transition in an insulator,” Nat. Commun. 7, 12670 (2016).
  7. S. Okamoto, “Spin injection and spin transport in paramagnetic insulators,” Phys. Rev. B 93, 064421 (2016). Editors' Suggestion
  8. S. Okamoto, W. Zhu, Y. Nomura, R. Arita, D. Xiao, and N. Nagaosa, “Correlation effects in (111) bilayers of perovskite transition-metal oxides,” Phys. Rev. B 89, 195121 (2014).
  9. E. Assmann, P. Blaha, R. Laskowski, K. Held, S. Okamoto, and G. Sangiovanni, “Oxide heterostructures for efficient solar cells,” Phys. Rev. Lett. 110, 078701 (2013).
  10. S. Okamoto, “Doped Mott insulators in (111) bilayers of perovskite transition-metal oxides with the strong spin-orbit coupling,” Phys. Rev. Lett. 110, 066403 (2013).
  11. D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, “Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures,” Nat. Commun. 2, 596 (2011).
  12. J. Salafranca and S. Okamoto, “Unconventional proximity effect and inverse spin-switch behavior in a model manganite-cuprate-manganite trilayer system,” Phys. Rev. Lett. 105, 256804 (2010).
  13. S. Okamoto, D. Sénéchal, M. Civelli, and A.-M. Tremblay, “Dynamical electronic nematicity from Mott physics,” Phys. Rev. B 82, 180511(R) (2010).Editors' Suggestion
  14. P. Yu, J.-S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C.-H. Yang, Q. He, J. X. Zhang, S.Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y.-H. Chu, D. A. Arena, C.-C. Kao, L.W. Martin, and R. Ramesh, “Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructure,” Phys. Rev. Lett. 105, 027201 (2010).
  15. K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S. Aizaki, A. Fujimori, and M. Oshima, “Dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films,” Phys. Rev. Lett. 104, 147601 (2010).
  16. S. Okamoto and T. A. Maier, “Enhanced superconductivity in superlattices of high-Tc cuprates,” Phys. Rev. Lett. 101, 156401 (2008).
  17. S. Okamoto, “Nonlinear transport through strongly correlated two-terminal heterostructures: A Dynamical Mean-Field Approach,” Phys. Rev. Lett. 101, 116807 (2008).
  18. S. Okamoto, A. J. Millis, and N. A. Spaldin, “Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices,” Phys. Rev. Lett. 97, 056802 (2006).
  19. S. Okamoto and A. J. Millis, “Spatial inhomogeneity and strong correlation physics: A dynamical mean-field study of a model Mott-insulator-band-insulator heterostructure,” Phys. Rev. B 70, 241104(R) (2004).
  20. S. Okamoto and A. J. Millis, “Electronic reconstruction at an interface between a Mott insulator and a band insulator,” Nature (London) 428, 630 (2004).
Satoshi Okamoto, Materials Science and Technology Division, Oak Ridge National Laboratory
PO Box 2008 MS6114, Oak Ridge, TN 37831, USA
Fax: +1 865-576-4944