Robust Ferromagnetism in Highly Strained SrCoO$_3$ Thin Films

Yujia Wang, Qing He, Wenmei Ming, Mao-Hua Du, Nianpeng Lu, Clodomiro Cafolla, Jun Fujioka, Qinghua Zhang, Ding Zhang, Shengchun Shen, Yingjie Lyu, Alpha T. N’Diaye, Elke Arenholz, Lin Gu, Cewen Nan, Yoshinori Tokura, Satoshi Okamoto, and Pu Yu

1State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
2Frontier Science Center for Quantum Information, Beijing, 100084, China
3Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
4Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
5Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
6Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
7State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
8Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
9RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
10Tokyo College and Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan

(Received 24 September 2019; revised manuscript received 17 January 2020; accepted 27 February 2020; published 7 May 2020)

Epitaxial strain provides important pathways to control the magnetic and electronic states in transition-metal oxides. However, the large strain is usually accompanied by a strong reduction of the oxygen-vacancy formation energy, which hinders the direct manipulation of their intrinsic properties. Here, using a postdeposition ozone annealing method, we obtain a series of oxygen stoichiometric SrCoO$_3$ thin films with the tensile strain up to 3.0%. We observe a robust ferromagnetic ground state in all strained thin films, while interestingly the tensile strain triggers a distinct metal-to-insulator transition along with the increase of the tensile strain. The persistent ferromagnetic state across the electrical transition therefore suggests that the magnetic state is directly correlated with the localized electrons, rather than the itinerant ones, which then calls for further investigation of the intrinsic mechanism of this magnetic compound beyond the double-exchange mechanism.

DOI: 10.1103/PhysRevX.10.021030

Subject Areas: Condensed Matter Physics, Magnetism, Materials Science

I. INTRODUCTION

In complex oxides, the epitaxial strain in thin film structures provides an essential control parameter to manipulate their corresponding electronic and magnetic ground states due to the interplay among lattice, charge, orbital, and spin degrees of freedom. A large group of transition-metal-oxide materials have demonstrated the emergence of novel properties through strain engineering, such as enhanced transition temperatures in ferroelectric [1], ferromagnetic (FM) [2], and superconducting [3] orders, as well as emergent exotic electronic states [4–6], as widely reported in high-quality epitaxially strained thin films.

Among such an oxide-materials family, particular attention has been paid to perovskite SrCoO$_3$ recently due to its intriguing FM metallic ground state [7,8] in the bulk compound attributed to the double-exchange mechanism proposed by Zener [9]. The density functional theory (DFT) calculations proposed that the Co d^6 ion antiferromagnetically couples with the ligand hole in the surrounding oxygen p states through the p-d hybridization to form the intermediate spin Co d^6L state [10,11]. More sophisticated treatment of the correlation effects, using the DFT + dynamical mean field theory (LDA + DMFT) [12], claimed that the local moment in SrCoO$_3$ results from the coherent superposition of different atomic states rather than the intermediate spin state [13]. Motivated by the

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
possible multiferroicity in strained transition-metal oxides [14], the magnetic ground state of strained SrCoO$_3$ was studied using the standard DFT. It was predicted that the ground state changes from a FM metallic state to an antiferromagnetic (AFM) metallic state, with a moderate tensile strain of 2.0% [15,16]. These theoretical predictions triggered a series of experimental studies to examine epitaxially strained SrCoO$_3$ thin films [17–20]. While most groups have obtained the FM metallic state in SrCoO$_3$ at low strain states, results on highly tensile-strained samples showed large diversity, which is likely due to the lack of good oxygen stoichiometry of the material resulting from the reduction of the oxygen-vacancy formation energy due to large tensile strains [17,18,21]. Thus, the intrinsic magnetic and electronic states as well as the underlying mechanism of highly strained SrCoO$_3$ still remain elusive.

In this paper, we report our magnetic study of highly strained SrCoO$_3$ thin films (up to tensile strain of \sim3.0%) with excellent oxygen stoichiometry, which is achieved by a new postdeposition ozone annealing process. To our surprise, the robust FM ground state is found in all tensile strained thin films, which is in stark contrast to previous theoretical predictions and experimental reports claiming a transition to the AFM state. Interestingly, we observe a metal-to-insulator transition along with the increase of the tensile strains. To gain insight into this observation, we carry out DFT + DMFT calculations and find that the orbital occupation changes more strongly with strain than what DFT predicts. Based on this, we propose a super-exchange mechanism with alternating orbital ordering, which is consistent with the robust FM ground state with insulating transport.

II. RESULTS

A. Fabrication and characterization of highly strained SrCoO$_3$ thin films

In previous studies, the strained SrCoO$_3$ samples were typically achieved via in situ oxygen (or low-pressure ozone) annealing processes, in which the resulting samples usually possess pronounced oxygen-vacancy contents. In this study, a two-step method has been developed to achieve the desired high-quality epitaxial thin films with great oxygen stoichiometry. First, the brownmillerite SrCoO$_{2.5}$ thin films (\sim30 nm) are grown using the pulsed laser deposition method, and then they are postannealed within ozone (see details in Sec. IV). The elevated annealing temperature (\sim300°C) and high ozone content (5 g/m3 in 1 bar O$_2$) triggers effectively the phase transformation from brownmillerite to perovskite with excellent oxygen stoichiometry of SrCoO$_3$ [Fig. 1(a)].

To manipulate the epitaxial strain state, various substrates, (001)-oriented single crystal La$_{0.3}$Sr$_{0.7}$Al$_{0.65}$Ta$_{0.35}$O$_3$ (LSAT) ($a = 0.3868$ nm), SrTiO$_3$ (STO) ($a = 0.3905$ nm), and (110)$_a$-oriented DyScO$_3$ (DSO) ($a_{\text{pseudocubic}} = 0.3944$ nm), are carefully selected, providing tensile strains of 1.0%, 2.0%, and 3.0% with respect to the lattice constant (0.3829 nm) of bulk SrCoO$_3$ [7]. As a consequence, the as-grown SrCoO$_{2.5}$ samples are epitaxially strained on all selected substrates and the crystalline orientations are perfectly correlated with that of the substrates underneath (see Supplemental Material Fig. S1[22]). It is interesting to note that the oxygen-vacancy channels of brownmillerite align along the in-plane (out-of-plane) direction with compressive (tensile) strain states, as evidenced by the presence of the superlattice peaks in the x-ray diffraction (XRD) θ-2θ scans [starred peaks in Fig. 1(b)] only for the samples grown on LSAT and STO substrates with compressive strain.

Despite different oxygen-vacancy orientations, all samples can be nicely transformed into perovskite structure through postdeposition ozone annealing, where the CoO$_4$ tetrahedra are oxidized into the CoO$_6$ octahedra, reflecting in the XRD results as the complete absence of the superlattice peaks and the movement of the pseudocubic (001) and (002) diffraction peaks toward the higher angles. Furthermore, detailed x-ray reciprocal-space mappings (RSM) along the pseudocubic (103) direction [Fig. 1(c)] are carried out to investigate the epitaxial relationship between thin films and substrates, in which the identical horizontal q values between the films and substrates (marked with red-dashed lines) strongly suggest that the post-ozone-annealed SrCoO$_3$ thin films are coherently strained with substrates (see Supplemental Material Table S1 for lattice parameters [22]).

Conventionally, the tensile strain in fully strained samples would introduce a systematic lattice contraction along the film-normal direction. However, such a trend clearly breaks down for the film grown on DSO substrate, in which a clear lattice expansion is observed. We speculate that such a crystalline structure change might be related to the evolution of lattice symmetry with tensile strain. With STO and LSAT substrates, the samples would be strained into the tetragonal phase from its bulk cubic compound; while with DSO substrate, the lattice structure would be largely deformed into the orthorhombic phase with lower symmetry. It is interesting to note that a similar structural anomaly was also observed in the previous theoretical work [15], in which the lattice changes from a high symmetry $P4/mmm$ to a lower symmetry $Pmc2_1$ at \sim2% tensile strain. The high-quality epitaxial nature of SrCoO$_3$ thin films was further confirmed by the high-resolution transmission electron microscopy (HRTEM) study (see Supplemental Material Fig. S2 [22]), which certifies that by this postdeposition ozone annealing method the SrCoO$_3$ thin films can be fully strained on the DSO substrates with as high as 3.0% strain without the formation of any detectable interfacial defects that would cause strain relaxation otherwise.
As mentioned, the lack of stoichiometry of oxygen concentration in highly strained SrCoO$_3$ samples was a big challenge that researchers suffered in previous studies, where noticeable oxygen vacancies are always formed [18–20]. The presence of oxygen vacancies in thin films would strongly modify the corresponding valence states of Co ions as well as their hybridization with oxygen ions. Thus, in order to carefully evaluate the oxygen stoichiometry in our samples, we perform the valence-state-sensitive soft x-ray absorption spectroscopy (XAS) at both the Co L edges and oxygen K edge for all strained SrCoO$_3$ thin films. To avoid the influence of possible surface reduction, we employ a bulk sensitive fluorescence yield (FY) mode to collect the XAS signals. The XAS spectra at Co L edges [Fig. 2(a)] clearly reveal that all SrCoO$_3$ films show identical features with the characteristic Co$^{4+}$ L_3 peak at \sim780.8 eV. For reference, the L_3 peak of the pristine SrCoO$_{2.5}$ sample is found at \sim780.3 eV with a very different line shape. This clear difference therefore suggests that the cobalt valance in all strained SrCoO$_3$ thin films is mostly 4^+ and their oxygen stoichiometry difference is negligible. For comparison, previous studies reveal typically an energy shift of 0.3 eV, corresponding to the change of oxygen contents by \sim0.15 per unit cell [18,20]. It is important to note that the surface-sensitive total electron yield (TEY) mode also provides consistent results (see Supplemental Material Fig. S3 [22]) as compared with the spectra taken with FY mode, indicating the homogeneity nature of the films along the growth direction. As the change of oxygen content can also modify the hybridization between O $2p$ and Co $3d$ orbitals, we further study the oxygen K-edge XAS spectra, in which identical hybridization features at \sim527.6 eV (see Supplemental Material Fig. S4 [22]) further prove the excellent oxygen stoichiometry, since this hybridization peak in oxygen-deficient SrCoO$_{2.5}$ would be dramatically suppressed and shifted toward higher energy (\sim529.2 eV) [23,24]. With all of these careful analyses, we can confirm that the postdeposition ozone annealing method achieves coherently strained and stoichiometric SrCoO$_3$ thin films.
B. Robust ferromagnetism in the highly strained samples

With these high-quality samples, we further investigate their intrinsic magnetic properties. Since the large paramagnetic background of DSO prohibits the direct magnetic measurement of the thin films grown on it, we carry out the element-specific and magnetic-resolved soft x-ray magnetic circular dichroism (XMCD) measurement [25]. Figure 2(b) shows the measured XMCD spectra of Co L edges at 20 K, in which the pronounced ($\sim 18\%$ at L_3 edge) XMCD signals with similar characteristic peaks manifest that all strained SrCoO$_3$ thin films possess robust magnetizations. Figure 2(c) represents the magnetic-field-dependent XMCD for all three samples, which shows well-defined hysteretic loops, confirming the FM ground states. Using the XMCD sum rule (see Ref. [25] and Supplemental Material Fig. S5 [22]) we calculate the spin and orbital contributions for the total magnetization as being around $\sim 1.0 \mu_B$/Co and $\sim 0.4 \mu_B$/Co, respectively. This result is consistent with the experimentally reported value for bulk SrCoO$_3$ [7] as well as slightly strained (1.0\%) thin films [23,24], however, it is in disagreement with some previous theoretical calculations that predicted an AFM ground state for highly strained samples [15,16]. To further investigate the FM state, we carry out temperature-dependent XMCD measurement for all strained samples (see Supplemental Material Fig. S6 [22]) with the calculated total magnetizations summarized in Fig. 2(d), which are consistent with the macroscopically measured magnetizations. The magnetic transition temperatures are estimated to be ~ 250 K, which is consistent with the previously reported value in high-quality SrCoO$_3$ samples grown on LSAT [23,24,26].

C. Strain-induced metal-to-insulator transition

While showing similar and robust FM states, this series of strained SrCoO$_3$ samples exhibit very different electronic
properties, as revealed by the temperature-dependent electrical transport measurements shown in Fig. 3(a). The SrCoO$_3$ sample grown on LSAT substrate shows a good metallic characteristic with residual resistivity of $\sim 10^{-4}$ Ωcm at ~ 15 K, which is much lower than previously reported values of single crystalline bulk [7] and thin films [24], however consistent with our recent studies of SrCoO$_3$ thin films obtained with ionic liquid gating [26]. This fact again confirms that our ozone-annealed SrCoO$_3$ samples are of high crystalline quality with minimal oxygen-vacancy concentration. This temperature-dependent curve follows nicely the T^2 relationship, in accordance with the Fermi liquid behavior of this metallic sample. Interestingly, with the increase of tensile strain, the conductivity is dramatically suppressed and a distinct insulating behavior is developed in the sample grown on DSO. Specifically, we have observed a more than 2 orders of magnitude enhancement of resistivity at room temperature between the LSAT and DSO samples. A careful analysis reveals that the temperature dependence of such a highly strained sample can be fitted with the three-dimensional Mott variable range hopping model [27,28] with \[\rho(T) = \rho_0 e^{(T_0/T)^{1/4}}. \] For SrCoO$_3$ grown on STO with tensile strain at the intermediate state, the resistivity remains insensitive across a wide temperature range [blue line in Fig. 3(a)], indicating that the SrCoO$_3$ film grown on STO is close to the phase boundary of metal insulator transition. For comparison, SrCoO$_3$ thin film grown on the LSAT substrate shows a dramatically reduced room temperature conductivity as compared with all SrCoO$_3$ thin films, and its exponential temperature dependence follows nicely the thermal activated semiconducting behavior.

To provide further insight into the strain-induced metal-to-insulator transition, we measure the optical conductivity spectra for selected SrCoO$_3$ samples as shown in Fig. 3(b). A Drude-like feature is observed for the sample grown on the LSAT substrate, which is consistent with its metallic nature. To investigate the insulating state, we replace the DSO substrate with TbScO$_3$ (TSO) (\(a_{\text{pseudocubic}} = 3.953 \text{ nm}\)) with the strain of 3.2% to avoid the absorption background from the DSO substrate. With this sample, the Drude feature is significantly suppressed with a spectra weight transferred to higher photon energy, which clearly indicates an insulating state of the SrCoO$_3$ with large strain. As a control experiment, reference spectra taken from a typical Mott insulator LaCoO$_3$ (grown on LSAT substrate) for comparison purpose.

FIG. 3. Strain-induced metal-to-insulating transition in SrCoO$_3$ thin films. (a) Temperature-dependent resistivity of strained SrCoO$_3$ thin films grown on various substrates. The result of SrCoO$_3$ grown on LSAT is shown in gray as reference. The fitting of the resistivity results are shown in dotted lines. (b) The room-temperature optical conductivity spectra from SrCoO$_3$ thin films grown on LSAT (1.0%) and TSO (3.2%) substrates (we replaced the DSO substrate with TSO to avoid the absorption background from the DSO substrate.). The gray dotted line shows the result from a typically Mott insulator of LaCoO$_3$ (grown on LSAT substrate) for comparison purpose.

D. Electronic structure calculations

In order to understand the underlying mechanism, we performed DFT calculations as well as DFT + DMFT
calculations. As shown in Fig. 4(a), our spin-resolved density of states (DOS) for relaxed SrCoO$_3$ is quantitatively consistent with the previous calculated result [13]. In contrast to the nearly fully occupied majority spin states, minority spin states are partially occupied and make a primary contribution to the electric conductance, in which the Fermi level crosses mainly at the Co t_{2g} states for relaxed SrCoO$_3$. The orbital occupancy of the fully relaxed sample obtained with our DFT + DMFT is indeed qualitatively in agreement with our DFT results [see Supplemental Material Figs. S7(a) and S7(b) [22]]. On the other hand, in tensile strained samples, the orbital degeneracy in t_{2g} states (xz, yz, vs xy) and in e_g states (x^2-y^2 vs $3z^2-r^2$) is expected to be lifted. Indeed, both DFT and DFT + DMFT results show such degeneracy lifting (see Supplemental Material Figs. S7(a) and S7(b) [22]), while the total Co$3d$ occupation and the ordered Co moments are only weakly dependent on the strain (see Supplemental Material Figs. S7(c) and S7(d) [22]). The degeneracy lifting is much larger in the DFT + DMFT calculation, giving a stronger strain-dependent orbital polarization. Under 4% tensile strain, the orbital splitting is so strong in the minority spin states that the Fermi level crosses primarily at xz and yz bands in DFT + DMFT data, while in DFT data the Fermi level crosses at xz, yz, and xy bands nearly equally [see Supplemental Material Figs. S8(a)–S8(d) for comparison [22]], i.e., orbital polarization is amplified by correlation effects [30–32]. This would result in one electron occupation in the twofold degenerate minority spin xz and yz orbitals, and potentially lead to the cooperative Jahn-Teller effect accompanied by alternating spatial arrangement of xz and yz orbitals. To simulate this situation, we introduce a tiny potential splitting between the xz and yz orbitals, $\Delta \varepsilon = 0.1$ eV, and carry out a DFT + DMFT calculation. As shown in Fig. 4(b), the tiny splitting is enough to separate the xz and yz bands at the Fermi level as marked by arrows. The difference in the transport property could be explained more clearly in momentum-resolved spectral functions as shown in Figs. 4(c) and 4(d). The spectral intensity at the
Fermi level is suppressed in the strained sample with such a small perturbation (0.1 eV), which could be regarded as a precursor of the electron localization. However, even with such a splitting inside minority bands, the FM ordering remains stable, and the ordered moment is barely changed.

Here, in contrast to the metallic state at unstrained or low-strained SrCoO₃ with the z/x/y degeneracy, where the FM interaction is mediated by the double-exchange interaction due to mobile minority electrons [Fig. 5(a)], the superexchange interaction with the alternating z/x/y ordering is responsible for the FM coupling due to the Kugel-Khomskii mechanism [33], as schematically shown in Fig. 5(b). We note that a similar FM interaction is realized in lightly doped CMR manganite [34]. This picture strongly contrasts with the previously predicted AFM ground state by first-principles calculations [15]. Indeed, using DFT, we confirm that AFM ordering is also more stable than FM ordering for the 4% strained sample by 0.36 eV per formula unit, which is accompanied by the change of the electron occupation N and the spin moment M on Co3d states from N ≈ 6.8 and M ≈ 2.9 μB at FM to N ≈ 6.7 and M ≈ 3.1 μB at AFM in DFT (both are close to the IS state at d⁵). These differences become even larger in our DFT + DMFT calculations; N ≈ 6.4 and M ≈ 2.7 μB at FM (IS state at d⁶) and N ≈ 6 and M ≈ 3.7 μB at AFM (HS state at d⁹). This drastic change of N and M comes from the fact that intermediate-spin states, in which both t₂g and e_g orbitals are partially filled, are unstable compared with low-spin and high-spin states in the atomic limit [35]. This energetics might be overlooked in the DFT calculations, and the comparison of the total energy between different spin states as well as the examination of the z/x/y orbital ordering within the DFT + DMFT framework are desirable but left for future studies.

III. SUMMARY

To summarize, this work demonstrates a robust FM state in SrCoO₃ thin films under tensile strain beyond the critical strain value above which a transition from FM to AFM was predicted. We found the coexistence of the ferromagnetism and insulating transport behavior in highly strained samples, indicating a different mechanism being responsible for the FM ordering in the strained thin films rather than the Zener’s double-exchange mechanism. Based on the DFT + DMFT calculations indicating strong orbital polarization under strain, we propose orbital ordering to induce the FM superexchange interaction with the splitting inside minority bands, which might finally cause a full gap. Furthermore, these results clearly highlight the importance of excellent oxygen stoichiometry for the studies of strained engineered complex oxides.

IV. METHODS

A. Synthesis of high-quality SrCoO₃ thin films

Brownmillerite SrCoO₂.₅ thin films are grown by a customized reflection high-energy electron diffraction (RHEED) assisted pulsed laser deposition system, at a growth temperature of 750°C and oxygen pressure of 0.125 mbar. The laser energy (KrF, λ = 248 nm) is fixed at 1.1 J/cm² with the repetition rate of 2 Hz. After the growth, the samples are cooled down to room temperature at a cooling rate of 10°C/min with 0.125-mbar oxygen to achieve high-quality epitaxial SrCoO₂.₅ thin films with the thickness of ∼30 nm. The sample thickness is confirmed with the x-ray reflectometry measurements, and the crystalline structures of thin films are characterized by a high-resolution four-circle x-ray diffractometer (Smartlab, Rigaku). The films are then postannealed in a chamber filled with 1 bar mixed ozone (5 g/m³) and oxygen with the flow rate of 0.5 L/min at 300°C for 40 min, which nicely triggers the phase transformation from brownmillerite SrCoO₂.₅ into perovskite SrCoO₃.

B. High-resolution scanning transmission electron microscopy characterization

The atomic-scale crystalline structures of the highly strained SrCoO₃ thin films are characterized with a high-resolution scanning transmission electron microscope (STEM, ARM-200CF, JEOL) operated at 200 keV and equipped with double spherical aberration (Cs) correctors.
C. Electrical transport and magnetic property measurements

A physical property measurement system (PPMS, Quantum Design) with lock-in amplifiers (Model SR830 DSP, Stanford research systems) is employed to measure the temperature-dependent resistivity, in which the four-probe method is employed to eliminate the contact resistance. Temperature-dependent magnetization is measured using a magnetic property measurement system (MPMS 3, Quantum Design) with the temperature ramping up from 4 to 300 K after a 2 T field cooling. In order to avoid the influence of the strong paramagnetic signal from the DyScO₃ substrate, we measure the remnant magnetization with zero field, while for other measurements, the magnetic field of 2 T is applied during the measurements.

D. Optical conductivity measurement

The reflectivity spectra are measured at room temperature with a spectrometer (Bruker IFS66v, Jasco MSV370), which covers the visible and infrared range with the energy from 0.3 to 3 eV. For this measurement, thin films are prepared on double-side polished substrates. To obtain enough optical intensity, we use slightly thicker samples with the thickness of ~50 nm as compared with other measurements. The optical conductivity spectra are derived from Kramers-Kronig analysis on the basis of the two-layer model.

E. X-ray absorption measurements

Soft x-ray absorption spectra (XAS) at Co L edges and O K edge are carried out at beam lines 4.0.2 and 6.3.1 of the Advanced Light Source with both total electron yield (TEY) mode and luminescence yield (LY) mode and then confirmed at beam line I06 of Diamond Light source with TEY and fluorescence yield (FY) modes and at BL25SU of SPring-8 with only TEY mode. The XAS spectra are normalized to the photon flux measured with the photocurrent from a clean gold mesh. For the x-ray magnetic circular dichroism (XMCD) measurements, the incident angle is fixed at 60°, the magnetic field (2 T) is applied along the beam incident direction, and a circularly polarized x-ray is employed. The XAS spectra presented in this work are taken at 300 K, while the XMCD spectra are taken from 3 to 300 K, and then normalized by the polarization of the used circularly polarized x-ray. For the TEY mode, the signal is obtained by collecting the total electron yield current from the sample, which is therefore a surface-sensitive technique. While for the FY (LY) mode, the signal is a collection of the fluorescence (luminescence) intensity from the whole sample, and therefore is bulk sensitive. It is worth noting that due to the self-absorption effect of FY, we observe clearly different L_2/L_3 peak ratios between FY and TEY modes.

F. Electronic structure calculations

We carry out density functional theory (DFT) calculations using the Vienna ab initio simulation package (VASP) [36] with the projector augmented-wave method [37] and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [38]. We use for Co and O, standard potentials (Co and O in the VASP distribution) and for Sr a potential in which s states are treated as a valence states (Sr_{v}). Structural optimization is performed using the Dudarev-type [39] on-site effective Coulomb interaction on Co d states with $U_{\text{eff}} = U - J = 1.5$ eV ($U = 2.5$ eV and $J = 1.0$ eV) [16] with the FM spin polarization. A kinetic energy cutoff of 600 eV and a Monkhorst-Pack k mesh of $12 \times 12 \times 12$ are used for the plane-wave expansion of wave functions and k-space integration, respectively. The calculated equilibrium lattice constants are 3.834 Å, which is very close to the experimental value of 3.829 Å [7]. For strain-free cubic perovskite SrCoO₃, all the lattice parameters (a, b, c) are optimized, and for strained SrCoO₃ the c-axis lattice constant is optimized under ab-plane biaxial tensile strain of 1% to 4%.

In order to extract the parameters to describe the hopping between Co d and/or O p orbitals, maximally localized Wannier functions are further constructed with the WANNIER90 code [40] using non-spin-polarized PBE-only wave functions calculated on the above-optimized structures. Fourteen Wannier functions are thus obtained corresponding to the five d orbitals on one Co cation and the nine p orbitals on three equivalent O anions. The spreads of the Wannier functions are all smaller than 1 Å².

For comparison with DFT + DMFT results, additional DFT calculations are carried out using the optimized structure as mentioned above. An on-site effective Coulomb interaction on Co d states is taken as $U_{\text{eff}} = 5.4$ eV [41], which gives the better agreement with the experiment and DFT + DMFT results in terms of ordered Co moments. Orbital-resolved Co d charge density and magnetization are computed from the local density of states projected onto Co d shells within the Wigner-Seitz radius of 1.302 Å.

DMFT calculations are performed using an effective model expressed as $H = H_{\text{band}} + \sum_{i \in \text{Co}, d} H_{\text{int},i}$. The band part H_{band} is given by

$$H_{\text{band}} = \sum_{\kvec, \sigma} \left[\hat{\gamma}_{k\sigma} \hat{P}_{k\sigma} \right] \begin{bmatrix} \hat{\epsilon}_{k\sigma}^{dd} - \epsilon_{DC} \hat{1} & \hat{\epsilon}_{k\sigma}^{dp} \\ \hat{\epsilon}_{k\sigma}^{pd} & \hat{\epsilon}_{k\sigma}^{pp} \end{bmatrix} \begin{bmatrix} \hat{\gamma}_{k\sigma} \end{bmatrix}.$$

Here, $\hat{\gamma}_{k\sigma}(\hat{p}_{k\sigma})$ is a vector consisting of annihilation operators of Co d ($O\ p$) electrons with spin σ and momentum \kvec. Matrices $\hat{\epsilon}_{k\sigma}^{\alpha\beta}$ are the momentum-dependent hybridization functions in the Wannier basis obtained in the DFT calculations. α and β run through Co d and O p states. ϵ_{DC} is so-called double-counting correction.
which subtracts Hartree-type Coulomb repulsion effects already included within DFT calculations. The interaction part $H_{\text{int},l}$ is formally expressed as $H_{\text{int},l} = \sum_{\alpha,\beta,\gamma,\delta} U_{\alpha\beta\gamma\delta} d^\dagger_{\alpha l} d^\dagger_{\beta l} d_{\gamma l} d_{\delta l}$ with $\alpha, \beta, \gamma, \delta$ indexing both spin and orbital on the Co d shell. Coulomb interaction $U_{\alpha\beta\gamma\delta}$ is expressed in terms of Slater integrals $F^{0.2.4}$. Taking the screened Coulomb interaction $U(=F^0) = 10 \text{ eV}$ and exchange interaction $J = 1 \text{ eV}$ [42] with $F^4/F^2 = 5/8$ [43], we determine $F^2 = 8.615 \text{ eV}$ and $F^4 = 5.385 \text{ eV}$. The DMFT procedure maps this interacting lattice model into an interacting impurity model consisting of interacting Co d states and the effective hybridization that will be solved self-consistently [44]. To solve the impurity model, we use the hybridization-expansion version of the continuous-time quantum Monte-Carlo method [45] at $T = 0.02 \text{ eV} = 232 K$. We keep only density-density components of $U_{\alpha\beta\gamma\delta}$ so that the efficient segment algorithm is utilized [46].

For the double-counting correction ε_{DC}, we use the procedure proposed in Ref. [47]:

$$\varepsilon_{\text{DC}} = \frac{1}{N_d} \text{Re} \sum_\alpha \Sigma_\alpha (\omega_n \to i\infty).$$

Here, N_d is the number of Co d orbital times 2 (spin), i.e., 10. $\Sigma_\alpha (\omega_n)$ is the Co d electron self-energy as a function of fermionic Matsubara frequency $\omega_n = (2n + 1)\pi T$. Using this formula, ε_{DC} is updated at each DMFT iteration. This method has been successfully applied to describe metallic systems [47]. The electron spectral functions are computed using the self-energy that is analytically continued to the real frequency axis by the maximum entropy method [48].

ACKNOWLEDGMENTS

This study was financially supported by the Basic Science Center Project of National Natural Science Foundation of China (NFSC) under Grant No. 51788104; the National Natural Science Foundation of China (Grant No. 51872155); the National Basic Research Program of China Grant No. 2016YFA0301004; the Beijing Advanced Innovation Center for Future Chip (ICFC); and Engineering and Physical Sciences Research Council with grant reference EP/N016718/1. This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under Contract No. DE-AC02-05CH11231. The research at O. R. N. L. was supported by U.S. DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. N. P. L. acknowledges support from the National Natural Science Foundation of China (Grant No. 11974401), the Hundred Talents Program of the Chinese Academy of Science, and the Strategic Priority Research Program of the Chinese Academy of Sciences of China (No. XDB30000000).

S. B. Hu, Y. Wang, C. Cazorla, and J. Seidel, Strain-Enhanced Oxygen Dynamics and Redox Reversibility in Topotactic SrCoO$_{3-\delta}$ (0 < \delta \leq 0.5), Chem. Mater. 29, 708 (2017).

