
 

 

 
Abstract 

 
Humans perceive some objects more complex than 

others and learning or describing a particular object is 
directly related to the judged complexity. Towards the 
goal of understanding why the geometry of some 3D 
objects appear more complex than others, we conducted a 
psychophysical study and identified contributing 
attributes. Our experiments conclude that surface 
variation, symmetry, part count, simpler part 
decomposability, intricate details and topology are six 
significant dimensions that influence 3D visual shape 
complexity. With that knowledge, we present a method of 
quantifying complexity and show that the informational 
aspect of Shannon’s theory agrees with the human notion 
of shape complexity. 
 

1. Introduction 
 

The cognitive study of 3D shape perception has helped 
computer vision researchers try and emulate activities like 
object recognition [3] and scene analysis [5]. However, in 
the interface between cognitive science and computer 
vision, an observation that has not received much attention 
is that some objects are easier to learn, memorize and 
recollect compared to others. If we are shown a series of 
unseen objects and then asked to recollect them, we 
realize our tendency to memorize and recollect simpler 
objects better and faster. This happens because the human 
brain intuitively and swiftly classifies objects as simple or 
complex, memorizes the simpler ones easily, and develops 
better and intricate feature descriptions for representing 
complex objects. Attneave [1] noted this aspect of visual 
cognition and stated that the complex visual objects are 
not only harder to reproduce from memory than simpler 
ones but also harder to learn by name and match.  

Attneave’s observation extends to applications 
involving search in 3D virtual spaces using computers 
also. Complex objects require a detailed feature 
description as compared to simpler ones. This makes 

identifying simple objects an interesting problem to 
investigate from a feature dimensionality perspective. Our 
paper addresses such a motivation to quantify judged 
complexity and documents the experiments conducted to 
establish the domain knowledge of attributes that make 3D 
surfaces appear complex. Our results will be useful in 
applications spanning CAD/CAE engineering model 
database search [11] to automatically learning the gist of a 
3D scene [15]. 

2. What is complexity? – Related work 
  
The literal meaning of the term complexity refers to the 
quality or the state of being complex, the word complex 
referring to intricate and interconnected, hence not easy to 
understand and analyze. Our goal is to quantify the 
qualitative notion of shape complexity. Hence, in this 
section, we present the interpretation of the word 
“complexity” from several disciplines that we hope to 
leverage towards formulating a scalar index for perceived 
complexity with 3D shapes. 
 
Shape complexity from a perceptual perspective: The 
seminal work with perceived or judged complexity dates 
back to Attneave [2]. Attneave had concluded that many 
aspects of object perception varied in difficulty with the 
complexity of the visual stimulus. But in spite of the 
complexity and the difficulty to memorize, humans still 
learn to encapsulate shape information in the associated 
complexity of the shape towards recognizing the object. 
Towards that end, Attneave’s extension in [1] listed the 
dimensions and physical determinants of judged 
complexity of 2D shapes and studied the perceptual 
complexity of 2D curves and line drawings as a function 
of angular variation, symmetry, curvature and many such 
factors to derive a regression equation for complexity 
along those variables. His study revealed the relationship 
between judged complexity and informational content, 
and concluded that aspects of perceptual complexity 
closely relate to Shannon’s information theory [24].  
 Study of perceived complexity has also been of 
research interest from a scene analysis standpoint. Heaps 
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and Handel [9] studied the perception of visual 
complexity along different variables such as 
connectedness, depth, orientation and structure on texture 
images. With the definition of complexity as “the degree 
of difficulty in providing a verbal description of an image” 
their results correlated with existing domain knowledge of 
symmetry and similarity simplifying a visual pattern. 
Recently, Oliva from the MIT Cognitive Vision Lab [16] 
listed clutter, symmetry, openness, organization, quantity 
of objects and variety of colors as six significant 
dimensions of perceptual complexity with 2D scenes. Her 
experiments in classifying real world scenes as simple or 
complex indicated the preferences of the human brain 
along those dimensions. Our work is centered on the 
definition of complexity from Heaps and Handel [9] and is 
motivated towards listing dimensions of perceived 
complexity with 3D surfaces with the focus only on shape 
geometry. 
 

3D shape complexity from a computational perspective: 
The notions that computer scientists associate the term 
complexity with are quite different from the vision 
perspective. Rossignac [23] defined different types of 
complexity that can be associated with a 3D object. He 
introduces algebraic complexity as the degree of 
polynomials needed to represent a shape in its implicit 
form, topological complexity as the existence of non-
manifold singularities, holes or self-intersections, 
morphological complexity as the measure of smoothness 
and feature size, combinatorial complexity as the measure 
of the vertex count in polygonal meshes and 
representational complexity as a measure based on ease-
of-use of a data structure, or the storage size of a 
compressed model. Furthermore, he discussed 
computational methods to approximate these shape 
complexity metrics. Rossignac’s definitions of shape 
complexity are computationally motivated and do not 
have a perceptual proof. Additionally, we would like for 
shape complexity metrics of 3D surfaces, especially in 
search applications, to be independent of computational 
storage, resolution of digitization etc. with focus mainly 
on the encapsulated geometric shape. 
 Complexity from a statistical perspective: The statistics 
literature provides a system theoretic definition of 
complexity [4] as a measure of the degree of 
interdependency between the whole system and a simple 
enumerative composition of its subsystems.  Several 
measures exist based on slightly different definitions of 
the aforementioned complexity. Shannon complexity [22], 
Kolmogorov complexity [6] and stochastic complexity 
[21] are some examples that derive out of information 
coding theory in being able to send a message as 
compactly and correctly as possible. The underlying 
concept with these definitions is the ability to quantify the 

distribution of local properties of the data as a measure 
(scalar index) of the interaction, predictability or 
dependency between its components. Relating 
Bozdogan’s definition [4] to 3D geometry of shapes, we 
visualize an analogy to associate aspects or physical 
attributes of shape and geometry whose interaction leads 
to the overall perceived complexity associated with the 
object. For example, if we consider a mesh representation 
of a 3D surface, the sub-components of the 3D surface 
would be the vertices and triangles, and the factors that 
influence the local shape variability integrate over the 
context of the entire object.  
 In this paper, we essentially follow the spirit initiated 
by Attneave in understanding the different informational 
aspects of visual complexity with 3D surfaces. The 
significant difference from Attneave being that we study 
perceived complexity from the geometry of 3D objects 
and surfaces compared to 2D line drawings of Attneave 
while still drawing inspiration for our heuristics and 
dependent variables from seminal papers such as [8] and 
[1] on 2D shape analysis. Our effort also differs from 
studies of visual perception of 3D shape as in [26] with 
focus only on 3D geometry rather than 3D shape cues 
from color, texture and shading. Our goal is towards the 
comprehension of a psychophysical basis that we present 
in Section 3, and list the different interacting components 
that build towards the overall complexity of the object. 

3. The psychophysical experiment 

3.1. Subjects 
 We had over 300 volunteers all over the world, as 
participants in our survey. The survey website link was 
posted on several forums within the University of 
Tennessee at Knoxville and science groups that reach 
people all around the world. Requests to fellow 
researchers and colleagues that were interested in our 
results were also sent out through electronic mail and 
encouraged to participate. We also had a separate 
population of 35 vision research students at the University 
of Tennessee, Knoxville that were explained the purpose 
and motivation of our survey before their participation. 
The introduced bias in that small population of 
participants did not seem to statistically influence their 
response to the questions compared to the unbiased 
population. The underlying density of the biased sample 
and the total population did not show concerns for the 
inference using the analysis of variance (ANOVA) 
procedure. At this point, we would also like to note, all 
our statistical analysis wherever applicable and reported in 
this paper correspond to 95% confidence. We have 
reported observations in this paper only if they were found 
to be significant at p < 0.01. 



 

 

3.2. Apparatus and stimuli 
We constructed a web-based psychophysical 

experiment. With simple HTML (Hyper Text Mark-up 
Language) forms as the front-end interface and back-end 
database processing, we designed the survey to infer about 
perceived complexity along several variables. The web 
design enabled us to embed 3D virtual reality models of 
real world objects into the stimulus interface viewable 
using different computer platforms with minimal 
requirements from the participant. The survey questions 
were built over the knowledgebase of several papers in the 
2D domain [19] and some new heuristics that we wanted 
to study for 3D shapes. Our implementation followed the 
guidelines of conducting a psychophysical experiment 
detailed by Martin [14]. Being a web-based survey, we 
implemented filters for discarding incomplete and 
thoughtless responses based on the number of questions 
answered and the time taken to answer each question. The 
web interface required a minimum monitor resolution of 
800 by 600 which was verified before the experiment 
began with the stimuli. The stimuli were also chosen to 
minimize any kind of apriori bias about the object. 

3.3. Method 
 Our survey had three different types of questions: (1) “2 
alternative forced choice (2AFC)” (2) perceptual rating, 
scoring and sorting (3) Multiple choice questions. With 
the Type 1 questions, two pictures or animated images of 
3D objects would be shown and the participant would be 
forced to choose one of the two pictures as a response to 
the question. We had included Type 3 multiple choice 
questions to explore new variables with additional 
flexibility of reporting answers if the participant 
considered the listed choices inappropriate. The 
participants were encouraged to use this “comments” 
feature at the beginning of the survey. The Type 2 
perceptual rating and scoring questions were used to 
verify correlation between human perception and existing 
shape measures.  
 These rating and scoring questions validated the 
difference between what humans actually thought and 
how they responded. For example, a person would have 
answered that the unfamiliarity of a 3D object did not 
influence the perception of complexity on a multiple 
choice question but their response on the rating or 2AFC 
question would imply otherwise. The average time taken 
by participants to complete the survey was 20 minutes. In 
the following paragraphs, we will describe the 
experiments that lead to conclusions about the different 
dimensions of perceived surface shape complexity. We 
will describe the stimuli and the inference from the 
different responses in understanding the physical 
determinants of perceived complexity.   

 
 Our experiment was designed to evaluate the 
relationship between the following attributes as different 
dimensions that contribute to the judged complexity of a 
3D surface: symmetry, surface variation, unfamiliarity, 
part count, presence of holes and protrusions, intricate 
details, relative size, scale and simpler part 
decomposability. These dimensions are listed from 
existing domain knowledge about influential aspects of 
object recognition. Without revealing these parameters, 
the participants were shown several 3D surfaces and 3D 
models of real-world objects. The participants were asked 
to choose between two shapes, and/or asked to sort and 
rate these objects based on their judged complexity in a 
scale of 1-10.  Then, we evaluated different hypothesis 
about a physical parameter contributing to perceived 
complexity using the ANOVA procedure for statistically 
valid inferences. We will reveal our observations in the 
Section 4 and document the impact of each one of the 
dimensions on perceived complexity.  

4. Experiment Results 

4.1. Experiment 1 – Effect of surface variation 
Synthetically generated deformable superquadrics [12] 

were chosen as a good test bed of varying surface shape 
while maintaining symmetry using shape parameters in a 
controlled manner. Based on the responses on a set of 
superquadrics similar to examples shown in Figure 1a, we 
observe that perceived complexity is directly related to the 
variation in the curvature; with sharper and unexpected 
variation contributing to increased complexity. We also 
observe that the average rating and the mode rating for 
hyperbolic surfaces increase with increase in variation of 
surface curvature. We are able to draw similarity with 
“surface curvature” as Attneave’s “number of turns” with 
2D contours. We show the trend in Figure 1b and 1c 
based on the average rating for different hyperbolic 
surface patches and superquadric shapes with a few 
examples. 

4.2. Experiment 2 – Effect of part count and 
simpler part decomposability 

In this experiment, the 3D objects were manually 
segmented into a number of perceptual parts, the 
definition of perceptual parts following Hoffman’s work 
[10] on part decomposition. Then, we associated the 
judged complexity response from the participants with the 
part count. We observed that people label objects with 
more number of parts as complex. We show the trend 
between number of parts and the judged complexity with 
complexity directly proportional to the part count as in 



 

 

Figure 1d. We show the general trend observed with our 
sample of real-world objects in that figure. This 
observation not only reminds us of the statistical 
definition of complexity, but also relates to Rossignac’s 
structural complexity. The variance seen in the box plot 
for some of the objects forced us into investigating what 
physical attribute was reducing an expected exponential or 
linear trend.  

Our analysis revealed that some objects in our database 
are made up of simpler 3D surfaces like cylinders, planes, 
hemispheres and such smooth simple surfaces. This 
phenomenon is observed with two objects in Figure 1d, 
the cube and the fan disk. Though the cube is known to 
have six faces and the fan disk contains 17 distinguishable 
surface patches, most of these patches have smoothly 
varying curvature or are planar and hence possess very 
little visual complexity. This implies that such simple 
surfaces that make up the object are reducing the overall 
perceived complexity. Hence, the conclusion that we draw 
is that though the number of parts is significant and 
directly proportional to the overall judged complexity of a 
3D object, the simplicity of parts in the decomposed form 
plays a significant counter-intuitive role. 

4.3. Experiment 3 – Effect of symmetry 
We evaluated the effect of symmetry in objects as well 

as surfaces. The symmetry was quantified by the number 
of axes of symmetry and studied as a parameter 
contributing to perceived complexity. As shown in Figure 
1e, objects and surfaces with lesser or no symmetry had 
high complexity ratings indicating that perceived 
complexity is in fact inversely proportional to symmetry 
in the 3D surface. 

4.4. Experiment 4 – Effect of protrusions, holes 
and intricate details 

The evaluation of these factors was performed by 
displaying 3D objects on the screen and requesting the 
participants to label an object as simple or complex. This 
experiment was performed in a hierarchical fashion. Each 
participant was shown close to 50 objects, some of which 
that had protrusions, holes and some with intricate details 
and some models with smooth surfaces. The participants 
would label objects as simple or complex and create two 
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(d) (e) (f) 

Figure 1: Attributes contributing to perceived complexity of 3D shapes. (a) Examples of stimuli used in the experiment. (b) 
Judged complexity on hyperbolic surface patches. (c) Judged complexity on superquadrics (d) Influence of part-count on judged 
complexity. (e) Effect of symmetry on perceived complexity (f) Feedback collected from participants at the end of the survey. 



 

 

classes based on perceived complexity.  This process of 
classification was then repeated for three levels of 
complexity. We show the trend with 14 objects in Figure 
2. We see that objects like the crank, the toilet with holes 
and protrusions, the dragon and the bunny with intricate 
details classified as complex. We are also able to gather 
support for the inference on the number of parts 
influencing judged complexity from this experiment also. 
The objects classified as the simplest either are made up of 
simpler parts, have very minimal variation in curvature 
and have multiple axes of symmetry. In the next class, 
there is not much symmetry with the objects, but factors 
like number of holes, number of discernable parts seem to 
be significant. In the most complex class of objects, we 
observe intricate details, very little symmetry and high 
surface variation. 

5. Informational aspects 
 
 Having studied different dimensions that influence the 
judged complexity of 3D objects, and concluding with 
observations that appear to agree with Attneave, we note 
that of the six important dimensions that we inferred, 
surface variation and symmetry are the two factors not 
considered by Rossignac [23]. His list of computational 
methods already includes part count, holes and protrusions 
and the feature smoothness that relates to intricate details. 
Our work now has added a perceptual inspiration to those 
definitions (Figure 1f).  
 
 Additionally, the effort to include this perceptual aspect 
to Rossignac’s definitions motivated our investigation of 
an information-theoretic method towards quantifying the 
perceptual characteristics of 3D geometric complexity 
using curvature variation. The observation that shapes 
with smoothly varying curvature attributed less to the 
judged complexity, and that objects with minimal or no 
surface variation appear less complex than shapes with 
significant variation in curvature helped us tread 
Attneave’s path with 2D contours.  
 
 Also, we have observed that surfaces with repetitive 
curvature patterns have lower shape information than the 
surface with no patterns. These observations also agree 
with Attneave’s theory [2] about how the probability of 
accidental occurrence contributes to visual significance. 
Thus, we begin relating notions of Shannon entropy [24] 
as suggested by Attneave and fore thought by Palmer [19] 
for 3D shapes. Although, the concept of Kolmogrov 
complexity, best suits the definition of 3D shape 
complexity as the difficulty for verbal description, we note 
that Kolmogrov complexity is not a computable scalar 
index. 

5.1. Shape measure to quantify complexity 
The shape measure that we formulate based on the 
perceptual inspiration can be implemented as three simple 
steps in sequence: (1) Curvature computation on a 3D 
mesh (2) bandwidth optimized density estimation (3) 
entropy computation from the kernel density estimate in 
Step 2. In the following paragraphs, we provide equations 
and a concise description to implement a simple shape 
complexity measure. 

 We now explain the Gauss-Bonnet curvature estimation 
algorithm in the umbrella neighborhood of a given vertex 
in the triangle mesh. Consider a vertex v and its immediate 
neighborhood vertices and define αi as the angle at v 
between two successive edges vvj and vvk. The Gauss-
Bonnet theorem from differential geometry can be 
simplified to digitized data towards computing curvature 
as shown below: 
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where A is the accumulated area of triangles around the 
vertex v and nv is the number of neighboring vertices of v. 
We compute the curvature using the formula in Equation 1 
at all vertices in the mesh leaving out only the boundary 
vertices. 

Next, we compute the kernel density function p̂  of the 
curvature values over the entire mesh.  Consider Equation 
2 where n is the number of vertices in the mesh, h is the 
bandwidth of interest, G is the kernel function and κi is the 
curvature at vertex vi. We visualize KDE as a series of 
‘bumps’ placed at each of the n estimates of curvature in 
the density space. The kernel function G determines the 
shape of these bumps while the bandwidth h determines 
their extent. With large data sets (n is large), the choice for 
G does not have a strong influence on the estimate. We 
use the Gaussian kernel in our implementation. 
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     We use the plug-in method in Equation 4 for optimal 
bandwidth selection as this method provides useful results 
without the selection of user parameters though commonly 
used cross validation methods can also be used. 
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where ( ) ( ) ( ) ( )∫ ∫== dt tGtG,dttGGR 2
2

2 μ  and σ̂  is the 

absolute deviation of the curvature data κi.  

 We have used curvature estimates at each vertex to 
generate probability density curves [25]. With these 
curves, we now formulate an information theoretic 
approach based on entropy to define the shape complexity 
measure. We argue that the amount of information that the 
curvature conveys about the surface can be quantified as a 
measure using Shannon’s framework. His definition of 
entropy for communication systems as a measure of 
uncertainty is the minimum number of bits required to 
encode a message. We apply Shannon’s definition of 
entropy to measure the predictability of curvature 
considered as a random variable. Furthermore, we also 
have to deal with resolution and normalized measure 
space. The number of vertices in the mesh decides the 
quantization of curvature—the larger the number of 
vertices, the better the approximation to the infinitesimal 
curvature. We counter the asymptotic exponential 
interaction between the resolution and curvature by 
normalizing the Shannon’s entropy measure as shown in 
Equation 5.  

∑−= ppSCM n ˆlogˆ  (5) 

We have chosen to normalize the SCM based on the 
resolution n (which is the number of vertices at which we 
have computed curvature). The normalization factor 
indirectly corresponds to the number of curvature 
quantization levels one expects from a triangulated model 
and decides the resolution of the SCM as a measure.  The 
normalization lets us compare the SCM measures of two 
different surfaces at different levels of mesh resolution in 
addition to the convenience of [0, 1] feature space. 

5.2. Correlation with human perception 
 As part of the psychophysical experiment, we had asked 
the participants to rate the perceived complexity of several 
surfaces (nearly 50) with a number in the scale 1-10. The 
statistical analysis on the SCM values with the human 
responses provided a high correlation of ρ = 0.85 with 
significance (p < 0.01) in support of the SCM capturing 
perceived complexity. We compared other shape metrics 
like shape index [27] (ρ = 0.45) and the variance of 
curvature (ρ = 0.58) also, before concluding the 
information-theoretic essence of judged complexity. 
Further, we conducted two more experiments for real 
world application. The first one was to classify 3D objects 
based on its judged complexity and the second towards 

identifying visually significant parts of 3D objects. We 
present a discussion of our observations in the following 
sections. 

5.3. Classification of objects based on complexity 
 In CAE and CAD databases, classification is a major 
requirement and good features can fasten 3D database 
pruning. We present results on different 3D models as 
classified automatically using the curvature-based shape 
measure and verify the human response in close 
agreement. The participants in the survey classified 3D 
objects into different levels of complexity. The first one 
was to classify them into two groups and then into three 
and then rate each object based on perceived complexity. 
We also performed this experiment automatically using 
our shape complexity measure (Figure 2) and observed 
that the SCM based hierarchical ordering followed the 
majority opinion (> 90% support in a sample population 
of 300). In the next, level of classification however, 
SCM’s performance dropped to 80% within each class of 
sub-divided complexity.  
 We attribute this to the fact that SCM does not 
encapsulate the interaction and the strength of contribution 
to observed complexity across the different dimensions. 
For example, we have not studied at what threshold a 
dimension like surface variation will over ride the number 
of parts towards judged complexity. These interactions are 
hard to quantify or understand and are potential 
bottlenecks in being able to quantify visual complexity 
using our proposed measure. Hence, we would like to note 
that with a larger database the classification rates may 
drop. 
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Figure 2: Classifying objects using the shape complexity 
measure agrees with how humans would do it. A simplified 
sample result with 14 objects. 



 

 

5.4. Application: Object description towards 
identifying informative parts 
The next application with the SCM is with identifying 
informative parts in 3D objects. Humans perceive 3D 
objects as a network of parts, some parts more significant 
and informative compared to others [7]. We intuitively 
tend to identify, label and memorize such salient structural 
information that we use for recognizing the object when 
observed in a different context. More so, the complexity 
of a part or an object helps is rejecting simpler ones in the 
database search process. In fact, the process of learning 
about a particular object happens by decomposing the 
object into abstract definitions and representations in our 
memory [20]. Page et al. [18] try to impart such a 
capability to the computer by demonstrating perceptual 
part-based representation of digitized 3D objects 
segmenting objects along the lines of negative curvature 
following the minima rule established by Hoffman and 
Richards [10]. We have used the mesh segmentation 
implementation of [18] on the objects that we show in this 
section.  
 Our brain is believed to further categorize relative 
importance of these segmented parts that make up the 3D 
object and remember the informative components even if 
they are not easy to describe in a physical or a verbal 
sense [26]. With our shape measure, we are able to 
simulate the quality of the human brain to attach 
significance/salience that is proportional to the descriptive 
complexity and recollect the significance for recognizing 

an object. Our claim is based on the observations similar 
to the examples shown in Figure 3.  
 Participants labeled the part that they considered would 
help in uniquely identifying the object. We found that for 
the objects in our experiment, the shape complexity 
measure identified the visually informative part of the 3D 
object nearly 60% of the time, with at least 80% accuracy 
within the top 3 choices agreeing with the majority of 
people. By identifying such parts, we should now be able 
focus our attention towards describing those parts better 
for matching purposes.  

6. Conclusions and future work 
 Palmer [19] had stated that information theoretic 
structural description is not going to be easy but probably 
the best approach to object description in the 3D world. 
Our attempts in this paper, have taken us a step closer. 
Though not solving the problem completely, our effort is 
best summarized as having conducted a psychophysical 
experiment for understanding perceptual complexity with 
3D objects extending existing domain knowledge on 2D 
contours and 2D images to 3D shapes. We have listed 
several variables as important dimensions of observing 
perceptual complexity. We have concluded that the 
physical attributes that contribute to perceived complexity 
on 3D geometry are surface variation, symmetry, part 
count, simpler part decomposability, intricate details and 
topology. Furthermore, based on the perceptual basis 
established, we have explained a shape analysis algorithm 
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Figure 3: Identifying salient parts of a 3D object. The parts identified by the SCM mostly agree with the majority of human 
responses.  



 

 

in the paper. The shape measure defined in the paper 
appears to quantify the perceptual aspect of descriptive 
complexity that can be associated with a 3D object. With 
the shape measure, we demonstrated the application on a 
database of 3D objects. We also extended the application 
to object description by quantifying the relative 
complexity of parts within the same object.  
 In future, we would like also like to implement our 
shape measure in 3D shape retrieval engines [17] to index 
objects based on perceptual principles, where the end user 
would specify the degree of complexity of the object and 
our shape measure could be used for reducing the model 
search space based on its magnitude. Further, the 
perceptual significance that our measure of complexity 
encapsulates can be used as an important feature towards 
object recognition and retrieval also. But, that will require 
more scale descriptive features to support the scale 
invariant SCM in an attributed graph in implementing a 
complete graph matching system for object recognition 
following Marr [13] and Biederman [3]. Our future efforts 
will target such applications. 
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