
 

 

 
Abstract 

 
The estimation of the fundamental matrix is the key step 

in feature-based camera ego-motion estimation for 
applications in scene modeling and vehicle navigation. In 
this paper, we present a new method of analyzing and 
further reducing the risk in the fundamental matrix due to 
the choice of a particular feature detector, the choice of 
the matching algorithm, the motion model, iterative 
hypothesis generation and verification paradigms. Our 
scheme makes use of model-selection theory to guide the 
switch to optimal methods for fundamental matrix 
estimation within the hypothesis-and-test architecture. We 
demonstrate our proposed method for vision-based robot 
localization in large-scale environments where the 
environment is constantly changing and navigation within 
the environment is unpredictable. 
 

1. Introduction 
The fundamental matrix F that relates two perspective 
images of a single rigid object/scene is estimated by 
solving the epipolar constraint in Equation 1, where im~  
and i'

~m are corresponding points in two images I and 'I  
respectively. Assuming that the calibration matrix (K) of 
the camera acquiring images of the scene from different 
viewpoints is available; F is instrumental in the estimation 
of the relative rotation (R) and translation (t) of the 
camera relating the two images. The notation x][t refers to 
the anti-symmetric matrix form of the translation vector t 
in Equation 1. 
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In vision-based vehicle navigation/localization 

applications, we note that the uncertainty about the pose 
(R, t) is directly related to the uncertainty on F. 
Unfortunately, the accuracy and the uncertainty about F 
depends on the quality of feature correspondences 

im~ and i'
~m .  Though, theoretically all pixels in I and 'I  

are eligible to contribute to im~ and i'
~m , for computational 

reasons and also for improved performance, we choose 
special interest points to build the list of correspondences 

im~ and i'
~m .  

The special interest points extracted are inspired by 
perceptual heuristics from human vision theory. For 
example, the Harris corners [1] are intensity-gradient 
based interest points, the curvature corner [2] is edge 
based, the phase congruency corners [3] are spatial 
frequency inspired while SIFT [4] is a multi-resolution 
feature. If all these feature point detectors extracted points 
with 3D characteristics that can be matched across images, 
the estimate of F would be independent of the interest 
point detector. But, in reality we observe that feature point 
detectors perform better in some situations while not 
meeting the expectations in some others. So, how do we 
choose the right feature detector for the scene of interest? 
Is it possible to choose the feature detector as the scene 
changes on a mobile platform adaptively? Our goal with 
this paper is to provide a potential solution to this 
question. 

If ε  is the probability that a feature point is in error, 
and p  is the probability indicative of a feature match 
error, the number of minimal hypothesis n  of s  sub-
samples taken at a time to fit a motion model M  of the 
fundamental matrix is shown in Equation 2. The 
confidence on the estimated geometry is based on an inlier 
bound condition modeled as a probability distribution 
(Equation 3).  
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Equations 2 and 3 hint at how the uncertainty on the 

corresponding points propagates as outliers in the 
subsequent matching stage corrupting the model 
parameters during the iterative hypothesis-verify scheme 
involved in solving the epipolar constraint.  
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Over the years of computer vision research for feature-
based 3D geometric inference summarized in Figure 1, we 
have seen several interest point detection methods [1, 2, 3, 
4, 5] claiming the reduction of pixel localization error ε . 
We have seen improved matching methods based on 
correlation [6] and monogenic phase [7] to operate on 
those interest points trying to produce matches with 
minimal probability of error p.  Furthermore, there is also 
a recent body of literature on the s-point (s = 8, 7, 6, 5) 
algorithms [8, 9, 10] for generating hypothesis model 
parameters M, along with several iterative verification 
improvements over RANSAC [11] to choose the best M 
and its parameters.  

The vast literature has forced performance evaluation 
publications comparing feature detectors [12, 13, and 14], 
feature matching strategies [7], hypothesis generators and 
the verification schemes [15].  Incongruously, 
comparisons from different authors conclude differently. 
For example, SIFT features performed the best in [12], 
Harris in [13], and Forstner in [14]. Another example is 
the comparison of hypothesis generators [8] that shows 
Nister’s 5-pt solver performing better in sideways motion 
while the traditional 8-pt algorithms [10] perform better 
for forward motion. So, for an arbitrary video sequence, in 
addition to the risk in the choice of the feature detector, 
how do we decide which minimal hypothesis generator (as 
in 5 pt, 6 pt, 7 pt or 8 pt solver) to use for the varying and 
intangible quality of feature correspondence data? This 
observation that the performance of feature detectors, 
matching algorithms and hypothesis generators are 
data/scene and motion specific motivates our work.  

We have organized this paper to share results from our 
implementation of pose recovery using several interest 
point heuristics, competing matching methods, hypothesis 
generators for image sequences Further, we demonstrate 
our scheme being able to leverage years of computer 
vision research to enable mobile robots in dynamic large-

scale real world environments to operate in an intelligent 
fashion switching pose recovery strategies while 
persistently considering the uncertainty about the 
fundamental matrix. In doing so, we would like to 
conclude this paper by summarizing the following 
contributions:   

 
• A new statistical procedure based on information 
complexity that automatically decides and guides the 
switch to optimal feature detectors and motion models 
for robust estimation of the fundamental matrix. 
 
• Formulation of the epipolar geometry estimation 
pipeline as a random process, generating ensemble 
space-ergodic characteristics to compensate for bad 
quality in time-stationary parameter convergence.  
 
• A potential method for quantifying the uncertainty in 
the fundamental matrix that is independent of the scene, 
and ground truth measurements. 
 
In the following Section, we establish the background 

to our approach with related work. In Section 3, we 
explain the theoretical inspiration for the inference engine 
and detail the implementation procedure in Section 4. We 
demonstrate our work in real world situations both in 
indoor and outdoor navigation applications in Section 5. 
Finally, we summarize our efforts and conclude with 
future directions in Section 6. 

2. Related work 
In the well researched area of camera ego-motion 
estimation, we begin by understanding methods discussed 
in [7, 15]. Out of the several methods in those surveys, our 
focus in this paper is on the feature-based 3D geometric 
inference using calibrated cameras. The seminal effort in 

Figure 1: There are several options available in the flow process for estimating the fundamental matrix. However, these options are 
scene and motion specific and the choice of these methods (pipeline) in a real world situation has to be adaptive to the environment. 
In this paper, we propose a statistical decision procedure to increase the confidence and reliability of the fundamental matrix. 
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[16] addresses our particular concern with attention to 
uncertainty of the fundamental matrix explaining different 
methods to estimate the epipolar geometry. We use the 
methods described to estimate F and its uncertainty along 
with the normalization procedure FDiff to normalize 
fundamental matrices from the implementation in [16].   

The methods in the literature that closely relate to our 
proposed work are [17] and [18]. Kanatani [17] proposes 
the idea of asymptotic analysis for uncertainty modeling 
and explains how to handle uncertainty in geometric 
fitting using model selection criterion. In the same paper, 
Kanatani modifies the Akaike information criterion for 
geometric inference and argues the need for a geometric 
extension from statistics. Using a similar model selection 
tool, Torr in [18] clusters feature matches for motion 
model determination detecting degeneracy, affine motion 
and even multiple motions between successive frames. 
Kanatani’s remarks in [17] and Torr’s future directions in 
[18] act as inspiration for our work in considering the 
fundamental matrix estimation process as a random 
process of sub-systems where the choice of the model M 
is as important as its estimated model parameters that 
make F.   

3. Theoretical inspiration 
The significant improvement that we provide over Torr 
[18] is that we perceive the fundamental matrix solver as a 
stochastic process and the correspondence data as the 
excitation signal to the process. Now, the sub-samples 
drawn from the large set of noisy correspondence data for 
model fitting is analogous to the time-shifted signal input 
for the model-fitting random process to produce the same 
or equivalent fundamental matrix as output. The n 
different hypotheses that the solver generates before 
making a decision is indicating uncertainty on the 
estimated fundamental matrix in a time-stationary sense. 

Our proposed idea to increase the reliability on the 
fundamental matrix is by generating an uncertainty model 
in a space-ergodic sense. We excite the random solver 
with spatially different correspondence data generated by 
different interest point detectors to generate the ensemble 
uncertainty samples. Our method then tries to compensate 
the deficiencies (uncertainty) in time-stationary sense with 
space-ergodicity (and vice versa) with the objective of 
reducing the total uncertainty on the fundamental matrix. 

This idea underlies our approach to uncertainty 
management on the fundamental matrix. We recollect that, 
in estimating F with noisy im~ and i'

~m  using the 
hypothesis-test-verify paradigm, there is two inherent 
embedded problems. The first one is the determination of 
the model M and the second, the parameters of M. While 
there has been considerable statistical attention on the 
estimation accuracy of the parameters of M, the validity 

for the model choice M is significantly ignored in the 
literature. Our approach generates statistics for the model 
validity using several interest point detectors and 
combines the model validity with the model fitting 
accuracy in choosing optimal minimal algorithms based 
on the scene and motion. 

Suppose correspondences im~ and i'
~m  are ideal as in a 

synthetically generated case, all the n different hypotheses 
would lead us to the same or equivalent F. But, in the 
noisy real world, robust model-fitting or hypotheses 
verification paradigms (inspired by RANSAC) can iterate 
to an estimate of F that is sub-optimal or iterate to a non-
acceptable result because of the outliers. If the quality of 
feature matches is good, the distribution of the model 
parameters during the iterative procedure will be confident 
and tightly bound. We model this convergence of the 
fundamental matrix parameters towards learning the 
optimal choice of methods that will lead to increased 
confidence in F. We describe the statistical procedure and 
the implementation details in the following section. 

4. Learning the optimal minimal algorithm 
 
The quality of feature correspondences im~  and 

i'
~m contains two types of errors, localization errors and 

gross classification errors. The bad matches also called 
outliers infiltrates uncertainty into the model estimation 
and fitting process. Our experience with real world 
environments is that the variance bound in Equation 3, 
needs to be adjusted drastically in images with nice 
structural features and ones with poor structure. Even 
robust outlier rejection methods like MLESAC [19] are 
not able to handle such situations mostly because of 
infinite possibilities to consider in real world dynamic 
situations. We will leave the model fitting method to 
consider modeling the error between re-projected interest 
points, while we consider the iterations of the consensus 
indicative of different hypothesis on vectorized f of F as 
our uncertainty sample.  

A good feature detector, matching algorithm, and a 
robust hypothesis generation algorithm would produce 
equivalent fundamental matrices F with a majority of the 
n minimal hypotheses evaluated for the inliers bound. In 
other words, the confidence in the distribution of f 
measures the uncertainty over generating the model using 
the corrupt correspondence data.  Then, we look at the 
parameters generated by different pipelines (choice of 
different feature detectors, hypothesis generation schemes 
and motion models) and evaluate the different estimates of 
F for model support or reliability. Our algorithm is 
summarized in Table 1 followed by the implementation 
details. 

 



 

 

Table 1: Our proposed algorithm 
1. For each potential competing pipeline of methods Pi 

listed in Figure 1 where i = 1,2 ,3..k, 
a) Use RANSAC and iterate to a convergence. 

Collect d-estimated parameters H of model M 
fitted during the iterations of RANSAC.  

b) Estimate d-variate probability distribution Bi 
based on j (j > 30) iterations of parameter 
estimates (H1…,Hn) collected. 

End 
2. Score Correspondence Outlier Consensus (COCi) 

using the model selection criterion in Section 4.1. 
3. Compute Model Consensus Score (MCSi) by 

evaluating competing distributions Bi as a multi-
sample clustering problem in Section 4.2.  

4. Choose the optimal pipeline Pi with minimum COCi + 
MCSi. 

5. Repeat Steps 1-4 every m frames 

4.1. Correspondence Outlier Consensus  
As mentioned previously, we are interested in the 
RANSAC convergence consensus and quantifying the 
confidence within the convergence process. Particularly, 
our interest is in identifying the pipeline that is indicative 
of maximum likelihood of the fundamental matrix 
parameters with minimum uncertainty, or in simpler 
words Bi with minimal variance. This can be 
mathematically expressed as the minimizer of the criterion 
(Equation 4) that simultaneously considers the likelihood 
and also penalizes the uncertainty associated with the 
likelihood of the parameters of model M.  This model 
selection criterion in the statistics literature [20] is 
popularly known as ICOMP and derives from the 
Kullback-Liebler (KL) distance between estimated and 
unknown underlying probability density. This criterion in 
theory is inspired from the same source as Kanatani’s 
geometric AIC [17] but is able to include the covariance 
of the model parameters. Without much modification, we 
are able to apply this criterion in evaluating the confidence 
in the model fit after the iterative convergence of 
RANSAC. We note that Equation 4 does not involve 
distributional assumptions and can be applied to even 
Parzen window estimates of Bi. The parameters f and 

FΣ̂ in Equation 4 can be computed using one of several 
methods in [16], though in our implementation, we use the 
moments of the distribution Bi. The correspondence 
outlier consensus (COC) is given by: 
 

)ˆ((2); of Likelihoodlog(2 1
1 FΣMfCOC −+−= FC  (4) 

 
where F -1 is the inverse Fisher information matrix, The C1 
measure and the F -1is computed using Equations 5 and 6. 
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with s being the rank of F -1, |.| refers to the determinant 
and tr refers to the trace of the matrix. 
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with D+

p being the Moore-Penrose inverse of vectorized 

FΣ̂ , ⊗ representing the Kronecker product. The C1 
measure for penalizing uncertainty is obtained by 
maximizing mutual information in d-dimensions. We 
direct the reader to [20] for sampling bias compensating 
implementation details on the finite sampling form of 
Equation 4.  Equation 7 is the reduced form of Equation 4 
for a normal distribution Bi generated using y samples 
from the iterations.  We would like to note that by 
choosing the pipeline with minimal COC score, we are 
able to learn the choice of methods, which require lesser 
number of hypotheses to evaluate at the same time 
penalize for the uncertainty in the estimated parameters. 
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Though we could stop with minimizing COC which is a 
minor improvement over [18], we note that the choice of 
the model M is a significant factor in the fitting process. 
For example, in an urban environment one feature detector 
could produce correspondence data that is tracking 
features far away like the sky and the clouds, while 
another might be tracking multiple objects such as cars 
moving in the scene. In the former case, we will end up 
choosing M with an affine structure with 5 parameters, 
and in the latter case up to 18 parameters on 2 
fundamental matrices. To avoid this risk in the choice of 
the model itself, we will quantify the model support from 
competing pipelines. 

4.2. Model Consensus Score 
The model consensus score is obtained by evaluating the 
data from several pipelines Pi in a multi-sample clustering 
framework using Equation 8. The idea is to cluster Bi of 
each Pi using information distance between the 
distributions inspired by the method described in [21]. The 
model consensus score (MCS) is as shown below.  
 

g2) of Likelihoodlog(2 +−= MMCS  (8) 
where g penalizes for the parameter parsimony for M. 



 

 

We begin by testing for the first three hypotheses listed 
below and in the occurrence of Case 2 or 3 alone, evaluate 
combinatorial subsets in Case 4.  The values of g for 
different cases are listed in Table 2.  
 

Table 2: Parameter parsimony penalty in MCS. 
Cases g of M 

Case 1: All models M equivalent (f and 

FΣ̂ are equal for all competing Pi) 
Cluster : {P1,P2…Pk} 

2
)1( +

+
ddd  

Case 2: Different M (Different f but 
equal FΣ̂ for competing Pi) 
Cluster : {P1} {P2}…{Pk} 

2
)1( +

+
ddkd  

Case 3: All M’s are different for 
competing Pi (Different f and different 

FΣ̂ for competing Pi) 
Cluster : {P1} {P2}…{Pk} 

2
)1( +

+
dkdkd  

Case 4: Cluster of κ pipelines of k 
competing Pi are equivalent (κ  f’s are 
equivalent) 
Cluster : [{P1} {P2}..{Pκ}]..{Pk-1}{Pk} 

2
)1( +

+
ddd κ

κ  

 
 The way we interpret these hypotheses is that when all 

pipelines are essentially leading us to the equivalent 
fundamental matrix, fusing correspondence data from two 
feature detectors for example, is not altering the 
convergence process or the end result. In such cases, the 
model fitting process can be inferred as stationary and 
ergodic with high reliability. We evaluate this condition in 
Case 1, where we treat all samples contributing to Bi of 
each Pi as drawn from a single distribution Bconsensus. This 
case usually occurs when we have interesting features like 
corners in buildings to track.  

However, our method is particularly useful only when 
Case 2 or Case 3 occurs. Case 2, tells us that the choice of 
the pipeline is influencing the estimate of F, and that we 
might have to be satisfied with the pipeline with minimal 
COC score. Case 3 forces us into the balancing act of 
which model and whose parameter estimates correspond 
to minimal uncertainty. We assign the minimal value of 
Equation 8 for the three hypotheses as MCS (Pi). Then, 
we try to learn the most efficient model by evaluating all 
combinatorial subsets for this purpose in Case 4, which is 
actually a nested form of Case 1, 2 and 3. We evaluate all 
possible clusters (subsets) and assign the minimum value 
of MCS over all clusters only to the κ pipelines with high 
model support. 
 This procedure is comparable to modeling the 
convergence consensus into a mixture model and finding 
the order of the mixture similar to previous effort [18], the 
difference being that we can now accommodate for the 
risk in choosing a particular pipeline. The COC score 

quantifies the risk in the estimation and the MSC score 
quantifies the risk in the model. Our next step is to 
combine them with the objective of improving the 
reliability on the process of fundamental matrix 
estimation. 

4.3. Total Uncertainty Score 

The total uncertainty score FU that we will use to make a 
decision about the choice of algorithms combines two 
probabilities (uncertainties). 
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Both the COC and MCS scores are constructed using log-
likelihood approximations of information complexity and 
the addition of these scores to decide on optimal Pi is 
intuitive. In addition, MCS and COC also provide an 
extra benefit of informing us, if we actually can improve 
the uncertainty over the fundamental matrix if we fused 
several pipelines instead of selecting pipelines. Since the 
MCS computation already considers the reliability aspect 
of fusion, we are able to note that if MCS of selected 
pipeline Pi is less than its COC score, we can improve by 
fusing the κ pipelines in the maximal cluster. We make 
this statement following the principles in the study of 
fusers better than the best sensor in [22]. However, in 
most real world situations that we experiment in the 
following section, pipeline selection proves to be the 
promising direction. 

5. Experimental Results 
In this section, we will consider navigation applications 

in indoor and outdoor environments. We will be 
presenting results on two situations using mobile robotic 
platforms. Our robotic platforms have direct pose 
recovery instruments either in the form of a laser range 
scanner and/or GPS/INS to provide us with a ground truth 
on the pose.  We will demonstrate our proposed 
framework to adapt to features based on the scene and 
also switch hypothesis generators adaptively based on the 
quality of the feature correspondences. 

We begin with results from using the vision-based pose 
recovery module in a large scale urban mapping platform 
as shown in Figure 2. We demonstrate our algorithm 
switching interest point detectors and motion hypotheses 
generators based on the scene and the motion. We show 
the Monte-Carlo result of one switch in this dynamic 
environment to emphasize the uncertainty management. 
The graphs indicate the reliability on the recovered pose 
after 100 iterations of convergence on the same frames. 
With these results, we are able to demonstrate that our 



 

 

method chooses feature detectors that guarantee 
reproducibility with better accuracy in pose recovery. 
From Figure 2(e), we deduce that, if we did not guide the 
switch, there is 50% greater chance that we did not 
estimate the optimal fundamental matrix. 

For the indoor case, our robot was equipped with a 
camera and SICK laser range finder and was intended to 
traverse a corridor as shown in Figure 3. During the 
course, the robot had to maneuver at different orientations 
during which our algorithm decided to use 5pt algorithm 
or 8 pt algorithm based on the data. For comparison sake, 
on offline processing of the image data using each one of 
the algorithms separately, we realize the significant error 
we would have accumulated had we not countered for 
Nister’s dilemma in choosing between 5pt and 8pt 
hypothesis generators [8]. In Figure 3, we also tabulate the 
average error in recovered pose per frame following the 
definition of error provided in [8] using the essential 
matrix. 

Our next experiment was to evaluate the robustness of 
the framework proposed in this paper. We selected 16 
video sequences (Figure 4), each with 2000 frames 
containing both man-made structures and natural 
vegetation. We show a plot of the average uncertainty 
score on each of these datasets with our adaptive method 

and a standard method (Harris+8 pt + RANSAC) with 
timing comparisons in Figure 4. From Figures 4 (b) and 
(c) we are able to visualize how the uncertainty 
management using our framework translates to reliability 
on the fundamental matrix. Our method is able to do as 
good as the standard method when the standard method is 
sufficient, and is able to further improve the reliability in 
other situations. 

Thus far, we presented results on real world 
environments both indoors and outdoors using the same 
mobile platform and pre-programmed vision module. In 
the experimental phase we made two interesting 
observations. The first observation was that, when we 
replaced our high resolution camera with a noisy cheap 
one, our method automatically chose a different set of 
feature detectors and hypothesis generation algorithms 
adapting to the noise characteristics of the cheap camera. 
 The second observation exposed a caveat. We realized 
that the time that we gain by minimizing the number of 
hypothesis to evaluate using our proposed method 
depends on how many competing models we evaluate and 
how often do we evaluate for a scene change.  Typically 
in our experiments, our inference engine feeds the vision 
system once every 300 frames to operate real-time. A 
drastically changing scene environment or a fast moving 
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Figure 2:  As the mobile platform with vision-based pose recovery navigates in this environment, tracking nice corners in buildings 
and then encounters vegetation, our method guides the switch to the better feature detector. (a) Our data collection system with GPS, 
INS ground truth measurement. (b) The challenging scene of interest with buildings and vegetation. (c) The Monte-Carlo analysis 
on the recovered pose and the error plotted as a distribution when tracking good corners. (d) Monte-Carlo analysis on the recovered 
pose when encountering vegetation. Our method guided the switch from STK/ Phase congruency feature with the buildings to the 
curvature corners when the scene dealing with vegetation. (e) Percentage of equivalent F generated in 100 trials. 



 

 

mobile robot might require more frequent updates 
demanding more computational overhead. In Figure 5, we 
show how much of an overload our framework requires 
compared to believing one single feature detector and one 
estimation algorithm. The graph shows that our proposed 
method is not going to challenge real-time operation in 
most cases when evaluated every 50 frames. 

6.  Summary 
We proposed a statistical procedure for uncertainty 
management when dealing with images from a calibrated 
camera in pose recovery using the fundamental matrix. 
We demonstrated results on pose recovery for navigation 
applications in indoor and outdoor environments. Our 
method combines the uncertainty in the convergence of 
the parameters of the fundamental matrix with the 
uncertainty of the model itself. The different models 
generated in the hypothesis-test framework of pose 
recovery provide the statistics for the confidence in the 
matches while the models generated by different feature 
detectors provide the statistics for quantifying the 
uncertainty in the model. By combining both these 
uncertainties, we have formulated a generic scheme using 
model selection theory that will help us choose methods 
for reliable estimation of the fundamental matrix at the 

same time acting as a performance measure of pose 
recovery using image features. 

Figure 4: (a) Sample frames from several video sequences 
considered in our experiments. (b) The average uncertainty 
score after choosing optimal algorithms vs. using Harris 
corners + RANSAC + 8 pt algorithm. Our approach shows 
significant improvement over believing on a single pipeline 
(c) Reliability (Average count on convergence on true pose 
between frames) on the fundamental matrix after conducting 
the same experiment 100 times. 
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Figure 3: Robot in a corridor with a camera and a laser sensor. 
We show the intended path for the robot along with a rough map 
that was integrated with the redline indicating the path of the 
robot. We also tabulate error results in the frames to show shat 
by switching methods, we maintain the uncertainty levels across 
frames. 
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Figure 5:  Timing analysis for learning competing models. (a) 
How much of a burden depends on the number of competing 
pipelines to evaluate. For this particular case, we had 20 
competing pipelines, evaluated once every 50 frames. (b) This 
graph indicates using our framework every 50 frames is not as 
much as a burden compared to the pose recovery. 
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