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Abstract -- The U.S federal government's strategic vision 
encouraging renewable energy production has motivated several 
new energy generation projects. Among them are large-scale 
renewable energy farm building efforts, where one considers the 
renewable resource potential along with land, equipment, and 
installation costs. The goal in the planning phase of these efforts 
is to maximize the return on investment and resource utilization. 
The challenge, which is specific to integrating new generation is 
the need to include the operational cost (both construction as 
well as run-time) of introducing power to the existing 
infrastructure. In this paper, we propose a methodology to 
account for and include energy transmission line proximity (a 
construction time cost) as well as thermal-overload, and voltage 
out-of-range (an infrastructure cost) factors when we plan to 
“tap” into an existing infrastructure. We present results for a 
study over regions in Texas, Kansas, Colorado, New Mexico and 
Oklahoma and discuss the findings. 
 

Index Terms-- renewable energy integration, power-flow 
costs, energy planning.  

I. INTRODUCTION 
Resource abundance drives the spatial feasibility of 

renewable energy farms more than energy demand and 
construction convenience. This means that we have to 
transport the power generated from such sites of resource 
abundance into existing energy transmission interconnects. 
As transmission line costs can go up to $1 million for a mile 
of 345KV line [1], the distance to the infrastructure becomes 
a key cost factor. 

As is also well known, resources like wind and solar 
energy are intermittent (variable) means of energy 
production. There may be several days in a year when the 
energy production falls below expected production efficiency 
and times with spurts of higher than expected production 
within the same day. On the other hand, the system must be 
designed for the maximum power scenario with the existing 
transmission and control infrastructure, which is expected to 
operate within certain voltage and power specifications. A 
typical transmission bus is designed for operation between ± 
6% of its voltage rating [2]. Exceeding or falling below the 
range must be avoided as it may severely damage company 
and customer equipment. Therefore, before adding the new 
power into the transmission network we have to make sure 

that expected line and transformer loadings are upgraded to 
handle spurts of energy production without violating ratings 
of the installed equipment. In other words, the existing 
infrastructure at the point of the “tap” must sustain the 
electrical and thermal limits of the newly injected power. 
Infrastructure improvements to prevent overload is thus 
another critical cost factor.  

The distance and infrastructure costs can separately and 
jointly dictate site feasibility. For example, a nearby bus may 
not be appropriate to connect new generation (even if it 
reduces the transmission line construction cost) if the power 
network topology is such that the new generation causes an 
overload. In a different example, the risk of thermal overload 
may be minimal, but the cost of installing a new transmission 
line can overwhelm the allocated budget.  

This paper is organized to address the need to consider the 
combined transmission and infrastructure costs in the 
planning phase. The question that we address is how can we 
systematically quantify and call out the cost of new electrical 
transmission construction as well as system topology 
infrastructure improvements to handle the influx of 
renewable energy during the site planning phase. 

II. RELATED WORK 
Large-scale renewable energy generation has been in the 

wish list of several developed and developing countries over 
the last three decades. Several books and research papers [3-
6] document issues associated with siting renewable energy 
generation facilities bringing forth factors such as project 
scale, technical feasibility and complexity, independent 
investment and operation risks, environmental concerns and 
demographic impacts. Some of the solutions presented in 
these papers have been made available as software tools. 
These software tools implement different models concerning 
renewable energy integration like supply–demand prediction, 
seasonal forecast, optimization, and emission estimation. 
Conolly et al. presents a comprehensive survey of these 
software tools in [7]. 

Recently, Vajjhala [8] conducted a spatial analysis for 
understanding the promises and pitfalls of siting renewable 
energy farms to conclude that green energy generation is 
challenged by economic, environmental, and infrastructure-
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The result of the nearest-bus assignm
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B. Infrastructure costs 
Using our distance analysis, we identified the nearest sub-

stations that are candidates to receive the generated power. 
We now have to understand the impact that the new power 
will have on the existing infrastructure. We considered the 
topology of the entire U.S electric grid consisting of 
approximately 65000 bus, 10500 generators, and 85000 
transmission lines [15,16] to run a power-flow simulation 
treating the site as a new generator adding extra power. We 
use the true values of generator and power line capacity 
preserving the geographic locations within our simulations. 
We note here that simulations using the real topology of the 
electric transmission system produces analysis along the lines 
of real-time transmission contingency planning. The results 
presented in this paper are based on the power-flow solver 
provided as part of the Power World simulator [17,18]. Other 
commercial and open-source tools like Siemens PSS/E [19] 
and ORNL's THYME [20] used in energy transmission 
planning may be leveraged for this computation. We chose 
Powerworld solver for its simplicity and functionality in  
providing base-case overloads with contingency analysis 
considerations similar to [11]. The process flow we followed 
in quantifying these results is summarized in Table 1. 

 
TABLE I 

PROCESS FLOW TO ESTIMATE POWER-FLOW COSTS WHILE ADDING NEW 
RENEWABLE ENERGY. 

Step 1: Determine the expected power output at each 
potential farm site (based on average resource 
potential and energy conversion efficiency of 
equipment). 

Step 2: Inject the total power generated for the farm (from 
step 1) to the closest geographical bus Nb(sj). 

Step 3: Run power-flow solver. 
Step 4: Check for transmission lines carrying power more 

than its thermal limit in the simulator's solution. 
Step 5: Check for buses that carry voltage more or less  than 

6% of its specifications in the simulator's solution. 
Step 6: Repeat Steps 2 to 5 by adding generated power for a 

different sites and site clusters. 
 
We analyzed the output of the simulation and identified 

buses that would be forced to operate over or under-voltage 
as well as lines operating beyond their maximum capacity 
limits. We present results from a few test cases by simulating 
power-flow in the existing grid infrastructure in Figure 3. In 
each figure, the red pin denotes the bus that receives the 
renewable power. The yellow pins and the orange pins are the 
result of our power-flow simulation representing under-
voltage and over-voltage buses respectively. The red lines 
denote overloaded lines.  
 The results in Figure 3a and 3c  suggest that building a new 
bus to handle a group of proposed farms may be more 
economical.  On the other hand, Figure 3b indicates that it 

may be sufficient to upgrade the 3 overloaded lines to higher 
capacity.  
 With market rates for a new bus, a new transmission line or 
an upgrade to a higher capacity transmission line available to 
us [1], these violations are converted into a quantifiable cost 
for the renewable energy integration. Again, the costs here 
are a new layer in the spatial area of interest akin to those 
developed in Section 2.1 and can be visualized similar to 
Figure 2d. 

 
 

(a) 

(b) 

(c) 
Fig. 3. The power-flow effect of adding new power into existing 
infrastructure. (a) Adding 831 MW of renewable energy from all the nearby 
sites results in 8 under-voltage, 15 over-voltage buses and 24 over-loaded 
lines (not all visible). (b) An isolated site generating 134 MW new power 
overloads 3 lines (only two are visible). (c)  Another example when 773 MW 
of renewable energy is generated from several potential sites in proximity. 
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IV. SUMMARY 
We have focused on building a computational framework 

for estimating two types of costs associated with introducing 
renewable generation as: (i) the investment required for the 
upgrade of equipment (to handle the new power  injected) 
and (ii) the proximity costs (as the amount needed to 
transport the power from the farm to the grid). We presented 
the two-pass approach that allows for the spatial optimization 
of renewable energy sites. The simulations that revealed the 
number of over-loaded lines and number of under- and over-
voltage buses helped us identify installation sites more likely 
for successful cost-effective integration while considering 
electrical stability.  The transmission costs captured the 
feasibility from an infrastructural viewpoint. The 
transmission costs combined with the power-flow costs 
helped us assess the financial aspects of integrating 
renewable energy beyond just the equipment purchase and 
installation. 

In studying close to 500 potential sites for renewable 
energy farming, we observe that the integration and 
transmission costs can be as exorbitant as the cost of the 
renewable energy equipment themselves. With a mile of 
transmission line costing close to a $1M, upgrades to lines 
costing about $0.5M, and building a new sub-station costing 
a few millions of dollars, the importance of having to 
consider integration and transmission costs cannot be over-
emphasized. 

The contributions of this paper are two-fold: (i) we have 
described a methodology to integrate electrical infrastructure 
related costs together with the proximity costs while planning 
for renewable energy investment in an evaluation study 
considering an actual US electric grid network, and (ii) we 
have demonstrated the construction of the two constituent 
cost layers - spatial proximity cost and power-flow cost to 
quantify and anticipate the impact of installing new energy 
generation capabilities. 

This methodology lends itself to systematic inclusion of 
land cost, resource potential, policy considerations, etc., that 
feed into an optimization program [21,22] for feasibility 
evaluation and investment enabling the integration of diverse 
cost measures. 
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