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ABSTRACT 

 
Interest point detectors are the starting point in image 
analysis for depth estimation using epipolar geometry and 
camera ego-motion estimation. With several detectors 
defined in the literature, some of them outperforming others 
in a specific application context, we introduce Multi-Feature 
Sample Consensus (MuFeSaC) as an adaptive and 
automatic procedure to choose a reliable feature detector 
among competing ones. Our approach is derived based on 
model selection criteria that we demonstrate for mobile 
robot self-localization in outdoor environments consisting 
of both man-made structures and natural vegetation. 
 
Index Terms— feature learning, RANSAC, interest point 
detector evaluation 
 

1. INTRODUCTION 
 
There are two types of errors associated with image interest 
points from low-level feature detectors: (a) classification 
errors and (b) measurement errors. As Fischler and Bolles 
explain in [1], classification errors occur when a feature 
detector incorrectly identifies a portion of the image as an 
interest point, while measurement errors occur when the 
feature is identified correctly but not at a precise repeatable 
location. The measurement errors are usually smoothed by 
modeling the error as a normal distribution, but 
classification errors have a larger effect that cannot be 
averaged because of gross deviations.  

The computer vision community has tried to minimize 
both these errors from two different perspectives. The first 

one is by weeding out outliers using a random sample 
consensus (RANSAC) procedure [1] and the second by 
improving feature detection with newer definitions of 
interest points [2]. Hence, after years of research, several 
interest point detectors and enhancements to the RANSAC 
procedure [3] have come to stay in the literature. The list 
that includes intensity-based Harris or Shi-Tomasi corners 
[2], contour-based curvature features [4], phase congruent 
corners [5], MLESAC [6] and several others is getting 
longer. The recent performance evaluations of such image 
features [7] seem to indicate that the choice of a low-level 
feature detector is dependent on the application and 
environment. Also, the different conclusions drawn from 
comparisons presented in [7] and [8] only further 
underscore the question when to use which feature detector.  

Our goal in this paper is to define a framework that can 
automatically decide when to use which feature. We will 
focus on a real world application in which a mobile robot 
tries to localize itself using video sensors. In such a 
scenario, where the usefulness and accuracy of low level 
features for pose recovery is significant, we will 
demonstrate our statistical Multi-Feature Sample Consensus 
(MuFeSaC) procedure leveraging informative 
characteristics of competing feature detectors and making 
the pose recovery reliable. With improved pose recovery, 
we present MuFeSaC that extends RANSAC as a new 

 Data-driven “feature method” selection approach 
that improves pose recovery from scenes with 
many outliers caused by vegetation, and 

 Information theoretic framework for learning and 
guiding the use of environment adaptive optimal 
features for camera ego-motion estimation. 

Harris corner [2] STK feature [2] Curvature corner [4] Phase-congruency [5] FAST [9] Color image 

Figure 1: Commonly used interest point detectors (such as Harris) do not seem to generate repeatable features in natural scenes 
compared to man-made structures.  The phase congruency detector and curvature corners though computationally expensive extract 
better features from vegetation. MuFeSaC can learn automatically when to use which feature in unknown unstructured environments. 
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1. For each feature detection method FDi , i = 1,2,3…N competing interest point detectors 
a) Extract interest points from two successive frames. 
b) Find the putative matches using proximity and cross correlation. 
c) Perform RANSAC and iterate to a convergence. Collect d-estimated parameters S of model M fitted 

during the iterations of RANSAC.  
d) Estimate d-variate probability distribution Bi based on n (n > 30) iterations of parameter estimates 

(S1…Sn) collected. 
End 

2. Score Single Feature Outlier Consensus (SFOCi) using the model selection criterion described in Section 2.1. 
3. Compute Competing Feature Consensus Score (CFCSi) by evaluating competing distributions Bi for different 

hypothesis and assign values as discussed in Section 2.2.  
4. Choose the optimal feature detector with minimum SFOCi + CFCSi. 
5. Repeat steps 1-4 every k frames, k can be adapted based on scene complexity. (Typically k ~ 300) 

Table 1: Pseudo code of the MuFeSaC algorithm 

Figure 1 shows an example of the problem that we are 
trying to address in this paper. The two images are from a 
video sequence of a mobile robot in an outdoor environment 
marked with interest points detected using different feature 
extraction methods. The top image with structured buildings 
has lesser number of uninteresting gross classification errors 
compared to the outliers caused by the vegetation in the 
bottom image. In the vegetation case, if only a single 
detector (like Harris corner) with many such classification 
errors is used in the pose recovery process, the commonly 
used RANSAC procedure, would either converge to a sub-
optimal result, or would take more iterations to ignore the 
outliers and converge to a solution. Our MuFeSaC 
procedure enhances RANSAC in such situations by 
studying competing feature definitions and feeding with 
informative interest points for better RANSAC 
performance.  

We will explain the MuFeSaC procedure in Section 2. 
Then, we will demonstrate experiments on video from a 
self-localizing mobile platform operating in unstructured 
terrain and compare MuFeSaC with RANSAC in Section 3. 
Based on these experiments, we will conclude with future 
directions in Section 4.  
 

2. THE MuFeSaC ALGORITHM 
 
MuFeSaC is an extension of RANSAC that includes 
multiple feature detectors. The contribution with MuFeSaC 
is an inference engine that in addition to finding the 
parameters of the interest model fit based on noisy data, also 
evaluates the confidence in the parameter estimates. 
MuFeSaC considers the confidence score from one single 
interest point detector along with the information from other 
competing interest points, thereby reducing the risk due to 
the choice of the feature detector. We list the different 
stages of the MuFeSaC procedure in Table 1. The backbone 
of MuFeSaC is model selection criteria based on 
information complexity that is used in the computation of 
scores SFOC and CFCS. In the following subsections, we 
will explain the implementation details of using the 
information criteria within MuFeSaC. 

2.1. Single Feature Outlier Consensus 
 
Based on the RANSAC convergence consensus alone, if we 
were to choose the best feature detector, we would ideally 
want to pick the method that is indicative of maximum 
likelihood of the parameters with minimum uncertainty, or 
in simpler words Bi with minimal variance. This can be 
mathematically expressed as the minimizer of the criterion 
(Equation 1) that simultaneously considers the likelihood 
and also penalizes the uncertainty associated with the 
likelihood of the parameters of model M.  This model 
selection criterion in the statistics literature [10] is known as 
ICOMP and derives from the Kullback-Liebler (KL) 
distance between estimated and unknown underlying 
probability density. Without much modification, we are able 
to apply this criterion in evaluating the confidence in the 
model fit during the iterations of RANSAC. We note that 
Equation 1 does not involve distributional assumptions and 
can be applied to even Parzen window estimates of Bi. 
  
ICOMP =   Lack of fit + Profusion of uncertainty 
               = -2 log (Likelihood of i) + 2 C1 (F-1( i))        (1) 
 
where F -1 is the inverse Fisher information matrix, i and 

i are the maximum likelihood estimates of the mean and 
covariance computed as the first two moments of Bi.. The C1 
measure and the F -1is computed using Equations 2 and 3. 
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with s being the rank of F -1, |.| refers to the determinant and 
tr refers to the trace of the matrix. 
 
                                      (3) 
 
with D+

p being the Moore-Penrose inverse of vectorized i, 
 representing the Kronecker product. The C1 measure for 

penalizing uncertainty is obtained by maximizing mutual 
information in d-dimensions [11]. We direct the reader to 
[10] for sampling bias compensating implementation details 
on the finite sampling form of Equation 1.  
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The ICOMP computed on Bi is the score SFOCi that 
quantifies the certainty in RANSAC convergence. We will 
now explain how to infer feature consensus based on the 
model fit from other interest point detectors in the following 
section. 
 
2.2. Competing Feature Consensus Score 
 
The CFCSi quantifies the agreement between the competing 
models M fit by RANSAC from each feature detector.  The 
score is obtained by first evaluating different hypothesis 
listed below and then choosing the optimal consensus 
combinatorial cluster among competing feature detectors: 
Case 1: All Bi’s are maximizing likelihood of the same 
parameters for model M. All i’s equal and i’s equal. 
Case 2: All i’s are unequal but i’s are equal. 
Case 3: All i’s and i’s are unequal, but there exists a 
maximal cluster of some i’s equal. 

 
The verification of these hypotheses is like performing 

multi-sample clustering based on information distances in 
an entropic sense described by Bozdogan in [12]. We follow 
a similar approach to verify the three cases, by considering 
the samples that contributed to distributions Bi to have come 
from the same distribution and evaluate the complexity in 
model-fitting as the criterion to decide which of the three 
cases has occurred. We use the Akaike information criterion 
(AIC) as shown in Equation 4 to score the different 
hypothesis.  

 

m  L 

AIC ii

2log2                           
clusteringafter parsimony Parameter                           

 cluster) feature of Likelihood( ),,(

 (4) 

 
The evaluation of the likelihood of feature cluster L only 

considers the samples that contributed to the distributions 
Bi’s within the cluster evaluated for consensus. We evaluate 
the parameter parsimony factor m for the 2N different cluster 
combinations based on the formulae listed in Table 2. The 
hypothesis that has minimum AIC is the statistical decision. 
Initially, we only evaluate the three cases. This initial 3-case 
hypothesis verification can avoid the 2N evaluations when 
all methods are accurate. We assign the minimizer of the 
AIC for the 3-case hypothesis as CFCSi to the 
corresponding feature detectors. If the minimizer indicates 
the occurrence of Case 2 or 3, we perform the evaluation on 
all combinatorial “feature detector” clusters. The minimizer 
of the AIC score still points to the cluster with maximal 
sensors contributing to the same model parameters. This 
AIC score is assigned only to the “feature detectors” within 
the maximal cluster. At this point, we note that identifying 
the different detectors not converging on the parameters, 
indicates the possibility that there might not be reliable pose 
recovery.  

Table 2: Parameter parsimony estimation for a simple d-parameter 
M with N = 3 example. 

 Clustering m 
Case 1 3 (F1,F2,F3) d+ d(d+1)/2 
Case 2 1 (F1)(F2)(F3) Nd +d(d+1)/2 

Case 3 2 
(F1,F2)(F3) 
(F1,F3)(F1) 
(F2,F3)(F1) 

d + d(d+1)/2 

 
Both the ICOMP and the AIC values being normalized 

information measures of complexity in our implementation; 
we are justified in using the sum of the two measures to 
choose the optimal feature detector. By establishing an 
information theoretic procedure for automatic “feature 
method detection” as a new addition to RANSAC, we 
present experiments deploying MuFeSaC in a real 
application. 
 

3. EXPERIMENTS 
 
We implemented 5 interest point detectors (Harris corner, 
STK features, phase-congruent corners, curvature corners 
and the FAST detector [9] on a mobile robotic platform. 
The threshold values were automatically adjusted to 
generate at least 100 interest points in a given image. These 
interest points were fed in as input to the MuFeSaC 
algorithm described in the previous section. We show 
MuFeSaC guiding the switch between different interest 
point detectors in Figure 2. Also, we note that MuFeSaC 
selects detectors that generate repeatable features. In 
particular, for images marked 2 and 3, the switch from 
Harris (image marked 4) to phase congruency appears to be 
significant. We show the panorama in Figure 2 for 
visualization purposes that was taken using a separate 
digital camera. The marked windows show the approximate 
physical location of the video frame that is used for 
localization. We have also marked the timeline for 
switching interest point detectors on the panorama image for 
clarity. 

We used a method similar to [13] for pose recovery 
from video for self-robot localization for a short 7 meter 
path. In Figure 2b, we show the result of localization and 
note the difference in pose recovery comparing Harris + 
RANSAC approach along with the ground truth 
measurements that were made using navigation instruments. 
We see that MuFeSaC has lesser deviation from the ground 
truth compared to the RANSAC procedure. In Figure 2c, we 
also present the computational overhead for MuFeSaC 
decision in contrast to single feature RANSAC to emphasize 
the real-time capability of MuFeSaC. Though MuFeSaC as 
a decision criterion is not a burden, the detection of multiple 
features along with RANSAC might pose a significant 
overhead. Hence, we suggest that MuFeSaC be executed 
only every k frames as previously mentioned in Table 1. 
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(c) Timing results: 5-feature MuFeSaC vs. Harris + RANSAC

Panorama of the area of interest created using a digital camera mounted on a tripod.

(a) Adaptive feature method selection using MuFeSaC in a challenging outdoor environment for robot self-localization.
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Figure 2: Results after deploying MuFeSaC for the self-localization of a robotic mobile platform with a video sensor. MuFeSaC 
helps choose detectors that generate repeatable interest points and hence reduce error in self-localization. 

4. CONCLUSIONS 
With MuFeSaC, we have extended the commonly used 
RANSAC procedure to accommodate the distinctness, 
stability, invariance and uniqueness of several interest point 
detectors in choosing an optimal one adaptively and 
automatically. MuFeSaC procedure which is inspired from 
MLESAC [6] to extend RANSAC, also performs better in 
applications were the target scenes are dynamically 
changing and one single feature detector might not be 
sufficient.  
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