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Abstract. In comparison with 2D face images, 3D face models have the  
advantage of being illumination and pose invariant, which provides improved 
capability of handling changing environments in practical surveillance. Feature 
detection, as the initial process of reconstructing 3D face models from 2D un-
calibrated image sequences, plays an important role and directly affects the  
accuracy and robustness of the resulting reconstruction. In this paper, we pro-
pose an automated scene-specific selection algorithm that adaptively chooses an 
optimal feature detector according to the input image sequence for the purpose 
of 3D face reconstruction. We compare the performance of various feature de-
tectors in terms of accuracy and robustness of the sparse and dense reconstruc-
tions. Our experimental results demonstrate the effectiveness of the proposed 
selection method from the observation that the chosen feature detector produces 
3D reconstructed face models with superior accuracy and robustness to  
image noise. 

1   Introduction 

The 3D reconstruction from uncalibrated video sequences has attracted increasing 
attention recently. Most of the proposed algorithms regarding feature matching and 
projective/metric reconstruction have applications in 3D reconstruction of man-made 
scenes [1, 2]. Recently, because of the difficulties in 2D face recognition caused by 
illumination and pose variations, recognition algorithms using 3D face models have 
emerged [3], which calls for reconstruction algorithms designed particularly for faces. 
Hu et al. used salient facial feature points to project a 2D frontal view image onto a 
3D face model automatically [4] and illustrated improved face recognition rates using 
the 3D model despite pose and illumination variations. Chowdhury et al. recon-
structed 3D facial feature points and obtained a 3D face model by fitting these points 
to a generic 3D face model [5]. 

Most existing 3D reconstruction algorithms start with feature selection and match-
ing [1, 2, 5]. Based on the matched features in consecutive frames, 3D projective and 
metric structures are recovered. Therefore, the accuracy and robustness of feature 
detection and matching directly affect the overall performance of the reconstruction. 
Popular features for 3D reconstruction are image corners and lines. For a man-made 
scene, there exist well-defined corners, which facilitate the use of fast and  
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straightforward feature detectors such as Harris corners. However, for face images, 
corners are not as distinguishable as in man-made scenes. In addition, face images 
include smooth areas, for example cheek and forehead, where feature matching be-
comes more ambiguous. Therefore, it is important to find an appropriate feature  
detector, which can make full use of facial features and avoid smooth areas simulta-
neously for 3D face reconstruction.  

In this paper, we propose a data driven feature detector selection algorithm, where 
the optimal detector is dynamically selected according to different scene structures 
using a cost function based on information complexity (ICOMP) [6]. Our selection 
framework, referred to as MuFeSaC [7], improves existing algorithms by using an 
adaptive strategy for automatic extraction of relevant features from face images that 
contribute to facial structure and thus lead to improved accuracy and robustness of the 
resulting 3D reconstruction. An example face image, detected corners, and recon-
structed 3D face model are shown in Fig. 1.  

(a) (b) (c)  

Fig. 1.  Reconstructing 3D models of human faces from uncalibrated video sequences. (a) Input 
face image. (b) Corners relevant for 3D reconstruction. (c) Reconstructed 3D face model. 

A performance comparison of various corner detectors using repeatability and  
information content can be found in [8]. The comparison was conducted based on 
various scene structures, including man-made and natural, and intended to provide 
general conclusions independent of input scene structures. In comparison, our algo-
rithm is a data driven method which dynamically chooses the optimal feature detector 
based on the input sequences. Such a method is particularly useful for face recon-
struction from surveillance videos where faces are tracked in various backgrounds. 

We apply our selection scheme to face sequences, evaluate and compare the per-
formance of the chosen detector against various types of feature detectors in terms of 
accuracy and robustness of the 3D face reconstruction, and prove that the chosen 
feature detector produces the best performance. 

The major contributions of this paper are: (1) defining a data-driven selection frame-
work that automatically chooses an appropriate feature detector for a face and eventu-
ally produces a better 3D reconstruction and (2) investigating the importance of feature 
detection methods in 3D reconstruction of faces by comparing results of several widely 
used corner detectors. Section 2 describes the 3D face reconstruction pipeline. Our 
automatic feature detector selection algorithm is discussed in Section 3. Experimental 
results are presented in Section 4 before drawing conclusions in Section 5. 
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2   3D Face Reconstruction 

Since 3D face reconstruction is the target application of our automated feature selec-
tion algorithm, the overall process of constructing 3D face models is presented in this 
section.  A schematic illustration of 3D reconstruction from a 2D uncalibrated image 
sequence with automated feature selection mechanism is shown in Fig. 2, which in-
cludes feature detection and matching, projective/metric reconstruction, 3D deforma-
tion, and texture mapping. 

 

Fig. 2. Schematic illustration of 3D face reconstruction with automated selection of feature 
detectors 

A two step feature matching process is employed.  The initial matching is per-
formed using a correlation based method.  The RANSAC method is used for outlier 
detection and robust matching based on estimated fundamental matrices.  Our auto-
mated feature selection method will be discussed in detail in Section 3.  The selection 
of feature detectors can be performed offline for applications with consistent scene 
structures.  Once the optimal feature detector is chosen, it can be applied directly for 
3D reconstruction.  However, for dynamic scenes where the characteristics of the 
scene structures are time varying, online selection is necessary.   

We use the factorization approach for projective reconstruction, as demonstrated in 
[9].  Let the jth point in the ith frame, xij, be projected from the scene point Xj 
by jiijij XP=xλ , where ijλ and iP  denote the projective depths and projection matri-

ces, respectively.  Given Np matched points in Nf frames we have:  
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where the matrix on the left hand side is the measurement matrix. We start with an 
initial estimate of the projective depths. The initial depths can be set to ones or ob-
tained using Sturm and Triggs’ method [10]. The depths are then normalized so that 

1
1
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ijij xxλ  and 1
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ij

T
ijij xxλ .  We find the nearest rank-4 approximation of the 

measurement matrix using SVD, based on which 3D reconstructed points are derived. 
These reconstructed points are reprojected into each image to obtain new estimates of 
the depths.  The process is repeated until the variations in the projective depths are 
negligible.  

We then find a transformation matrix H  and upgrade the projective structure by 

jHX . Using the dual absolute quadric *Ω , we have T
iii PP *

1
* ~ Ωω  where 

T
iii KK=*ω with Ki as the camera’s intrinsic matrices [11]. A linear solution of *Ω  

can be obtained by imposing additional constraints on the camera’s intrinsic parame-
ters, such as zero skew, unit aspect ratio, and zero principal point, and the rank-3 
property is applied for improved accuracy. The transformation matrix is then obtained 

by forcing )0,1,1,1(*
1 diagHH T =Ω  and projective reconstruction is elevated to met-

ric reconstruction by 1
,

−= HPP iiE and jjE HXX =, . Finally bundle adjustment is 

carried out to minimize the projection errors: 
2

, ,,min∑ −
ji jEiEij XPx . 

The output of the previous module is a cloud of points but not a smooth surface 
representing a human face. By assuming that sufficient face information is embodied 
in the sparse point cloud, we deform a generic 3D face model. The vertices in the 
generic mesh are deformed using energy minimization principles similar to [5]. The 
procedure matches features in the generic mesh model by rotating R, translating t and 
scaling s 3D points and aligning the two models using an energy minimization func-
tion ∑ −=

j jMjE XXRsE 2
,, ||||),,( t , where XE,j is the reconstructed point and XM,j refers 

to the point in the generic mesh. Once the initial alignment is obtained, the points in 
the generic mesh model are refined by weighing the distance along the surface normal 
of the mesh and the nearest reconstructed points and then deformed to preserve the 
features of the face reconstructed from the image sequence. 

Once a 3D face mesh model is obtained, texture mapping is carried out by con-
structing the texture on a virtual cylinder enclosing the face model. A color is associ-
ated with each vertex of the deformed model by computing blending weights of each 
rectified image used for 3D reconstruction. The blending weights are based on the 
angle between the reconstructed camera’s direction and the surface normal of the 
deformed mesh model. 

3   Feature Selection 

With the processing pipeline described in Section 2, our initial experiments indicated 
that sparse reconstruction had a major influence on the accuracy of dense reconstruc-
tion, and that the choice of the feature detection method was critical in converting the 
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image sequence into a meaningful and accurate sparse 3D point cloud. This observation 
motivated our study of different feature detectors leading to the definition of MuFeSaC 
[7], short for multiple feature sample consensus, as an extension of RANSAC used in 
the sparse reconstruction pipeline to include multiple feature detectors. 

The contribution of MuFeSaC over RANSAC is an inference engine that, in addi-
tion to finding the parameters of the interest model fit based on noisy data, also evalu-
ates the confidence in the parameter estimates. MuFeSaC operates towards computing 
confidence scores from RANSAC iterations at the same time combining the confi-
dence from one single feature detector with the information from other competing 
interest points, thereby reducing the risk due to the choice of the feature detector. We 
list the different stages of the MuFeSaC procedure in Table 1 and explain the model 
selection criteria called information complexity that acts as the consensus scoring 
tool.  The implementation details of single feature outlier consensus and competing 
feature consensus are discussed in Section 3.1 and 3.2, respectively. 

Table 1. Pseudo code of MuFeSaC 
 

1. For each feature detector  FDi , i = 1,2,3…N  
a) Extract interest points from two successive frames. 
b) Find the putative matches using proximity and cross correlation. 
c) Perform RANSAC and iterate to a convergence. Collect d-estimated parame-

ters S of model M fitted during the iterations of RANSAC.  
d) Estimate probability distribution Bi based on n (n > 30) iterations of parame-

ter estimates (S1…Sn) collected. 
  End 

2. Score Single Feature Outlier Consensus (SFOCi) using the model selection criterion.  
3. Compute Competing Feature Consensus Score (CFCSi) by evaluating competing 

distributions Bi for different hypothesis. 
4. Choose the optimal feature detector with minimum SFOCi + CFCSi. 

Repeat steps 1-4 every k frames. (Typically k=10 for face videos) 

3.1   Single Feature Outlier Consensus 

If we were to choose the optimal feature detector based on the RANSAC convergence 
consensus alone, we would ideally want to pick the method that is indicative of maxi-
mum likelihood of the parameters of the model fitted by RANSAC with minimum 
uncertainty, or in simpler words Bi with minimal variance. This can be mathemati-
cally expressed as the minimizer of criterion (2) that simultaneously considers the 
likelihood and also penalizes the uncertainty associated with the likelihood of the 
parameters of model M.  This model selection criterion in the statistics literature [6] is 
known as ICOMP and derives from the Kullback-Liebler (KL) distance between es-
timated and unknown underlying probability densities. Without much modification, 
we are able to apply this criterion in evaluating the confidence in the model fit during 
the iterations of RANSAC with each feature. We note that Eq. (2) does not involve 
distributional assumptions and can be applied to even Parzen window estimates of Bi. 

 
SFOCi =   Lack of fit + Profusion of uncertainty 

                       =    -2 log (Likelihood of μi) + 2 C1 (F
-1(Σi)), 

(2) 
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where F -1 is the inverse Fisher information matrix, μi and Σi are the maximum likeli-
hood estimates of the mean and covariance computed as the first two moments of Bi.. 
The C1 measure and the F -1are computed using Eq. (3) and (4): 

)(log
2

1))((
log

2
))(( 1

1
1

1 i
i

i F
s

Ftrs
FC Σ−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Σ=Σ −
−

− , (3) 

where s denotes the rank of F -1, |•| refers to the determinant, tr refers to the trace of 
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with D+
p being the Moore-Penrose inverse of vectorized Σι and ⊗ representing the 

Kronecker product. The C1 measure for penalizing uncertainty is obtained by maxi-
mizing mutual information in d-dimensions. We direct the reader to [6] for more 
implementation details on the finite sampling form of Eq. (2). 

3.2   Competing Feature Consensus 

The CFCSi quantifies the agreement between the competing models M fit by 
RANSAC from each feature detector.  The score is obtained by first evaluating differ-
ent hypothesis listed below and then choosing the optimal consensus combinatorial 
cluster among competing feature detectors: 
 

Case 1: All Bi’s maximizing the likelihood of the same parameters for model M. 
All μi’s equal and Σi’s equal. 

Case 2: All μi’s equal but Σi’s are not. 
Case 3: All μi’s and Σi’s unequal, but there exists a maximal cluster of μi’s equal. 
 

The verification of these hypotheses is like performing multi-sample clustering based 
on information distances in an entropic sense as described by Bozdogan in [6]. We 
follow a similar approach to verify these three cases, by considering the samples that 
contribute to distributions Bi to have to come from the same distribution and evaluate 
the complexity in model-fitting as the criterion to decide which of the three cases has 
occurred. We use the Akaike information criterion (AIC) to score the different hy-
pothesis based on the likelihood of feature cluster L and parameter parsimony  
estimation m.  

.2log2                           

clusteringafter parsimony Parameter                           

 cluster) feature of Likelihood( ),,(

m  L 

AIC ii

+−=

+−=Σ κμ
 (5) 

The evaluation of the likelihood of feature cluster L only considers the samples that 
contributed to the distributions Bi’s within the cluster evaluated for consensus. We 
evaluate the parameter parsimony factor for the 2N different cluster combinations 
based on the formulae listed in Table 2. The hypothesis that has minimum AIC is the 
statistical decision. Initially, we only evaluate the three case hypotheses. This initial 
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3-case hypothesis verification can avoid the combinatorial evaluations when all  
methods are accurate. We assign the minimizer of the AIC for the 3-case hypothesis 
as CFCSi to the corresponding feature detectors. If the minimizer indicates the occur-
rence of Case 2 or 3, we perform the evaluation on all combinatorial “feature detec-
tor” clusters shown under Case 3 in Table 2. The minimizer of the AIC score on these 
sub-clusters points to the cluster with maximal κ feature detectors contributing to the 
same model parameters. This AIC score is assigned only to the “feature detectors” 
within the maximal cluster. This cluster evaluation procedure eliminates the possibil-
ity that we select a feature detector that has minimal outliers but is giving us totally 
different parameters after RANSAC convergence. 

We just add the two definitions of information measures which is a common prac-
tice with log utility functions. Also, we note that our formulation with SFOCi mini-
mizes the error in the model used for estimating the geometry from successive views. 
On the other hand, CFCSi takes care of the risk in the model itself by inferring from 
different model generators in feature detectors. Thus, with MuFeSaC automatically 
selecting the interest points from a face video sequence, we now present experimental 
results. 

Table 2. An example of parameter parsimony estimation (m) for a simple d-parameter model M 
with N = 3 

 

 κ Clustering m 
Case 1 3 (F1,F2,F3) d+ d(d+1)/2 
Case 2 1 (F1)(F2)(F3)  Nd +d(d+1)/2 

Case 3 2 
(F1,F2)(F3) 
(F1,F3)(F2) 
(F2,F3)(F1) 

κd +κd(d+1)/2 

4   Experimental Results 

Eight face images of each subject, collected from different viewpoints, are used for 
3D face reconstruction. Five types of corner detectors are implemented: curvature 
corner [12], Harris corner [13], STK [13], phase congruency corner (PCC) [14], and 
FAST [15]. These feature detectors are chosen for the different heuristics that moti-
vates them, Harris corners being intensity gradient-based, phase congruency being 
spatial-frequency inspired, and curvature corners being edge-derived. We compare the 
3D reconstruction using the sparse point cloud and dense 3D face model. The sparsely 
reconstructed point cloud is an intermediate output, the accuracy of which determines 
the performance of the successive dense reconstruction. The performance of the 
sparse reconstruction provides a direct measure of evaluating the influence of the 
corner detector on the final 3D face reconstruction excluding factors which may come 
into play from 3D deformation. Hence we compare results at both stages of recon-
struction. In the interest of space, only the results from one subject are presented with 
similar observations applicable to other tested subjects. The curvature corner was 
chosen as the optimal detector for this sequence by our automated selection algorithm. 
Therefore, in the following discussion, its performance is compared against the  
performances of other tested corner detectors.  
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4.1   Sparse Reconstruction 

Fig. 3 illustrates our experimental results and compares the performance of the chosen 
feature detector, curvature corner, against other corner detectors. Sample images with 
detected corners show that corner detectors behave in different ways for face images 
which include both clustered corners (eyes and mouth) and smooth areas (cheek and 
forehead). Curvature, FAST, and PCC detectors focus on image edges while the cor-
ners detected by Harris and STK also appear in smooth areas. 

The reconstructed 3D point clouds are shown from the best viewpoint in terms of 
illustrating the facial structure. From visual inspection of these 3D plots, we see that 
the reconstructed structure using curvature corners, the chosen feature detector, yields 
the best visual representation. From Harris and FAST corner detectors, visible facial 
structures are obtained with an increased number of noisy points. As for the STK 
corner detector, the noise level further increases resulting in a structure barely distin-
guishable. In comparison, the reconstructed structure from the PCC detector has most 
of the points with good approximation but a few points with large errors. 

We use the variations in the projective depth to describe the accuracy and stability 
of the reconstruction. From actual measurement, the variation in depth in the world 
coordinates should be within 30cm, which corresponds to 0.375 when normalized to 
the camera coordinates. The back projected depths in the camera coordinates are plot-
ted for all detected corners in all frames in Fig. 3. We use the percentage of the 3D 
points with a projective depth exceeding the theoretical range to quantitatively evalu-
ate and compare the performance of various feature detectors, as shown in Fig. 4. All 
of the back projected depths from the curvature corner detector fall within the theo-
retical range. The variations from other detectors exceed the theoretical range with the 
STK detector yielding the most variations. The frequency and magnitude of variations 
exceeding the theoretical range are from noisy reconstruction caused by erroneous 
corner matching. Based on this quantitative measure, the chosen feature detector, 
curvature corner, has the best performance. From both visual inspection and quantita-
tive measure, the chosen detector produces properly spaced corners around major 
facial features and hence generates the most accurate and robust sparse  
reconstruction. 

4.2   Dense Reconstruction 

The final 3D dense model is obtained by deforming a generic face model using the 
point cloud recovered from sparse reconstruction. The reconstructed face model is 
compared with a 3D reference model scanned using a Genex Face Cam. The original 
scan is processed in RapidForm to remove holes and spikes. The deviation from the 
reference model describes the accuracy of the reconstruction and hence the efficiency 
of the corresponding corner detector. Fig. 5 illustrates the recovered 3D dense face 
models and their deviation from the reference model. The result from the FAST detec-
tor is not included because the sparse reconstruction does not have sufficien depths 
recovered on identifiable facial features. From Fig. 5, we observe that the dense re-
construction based on the chosen detector, curvature corner, yields the smallest 
maximum deviation (5.32) as compared with Harris (5.50), STK (5.93), and PCC 
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Fig. 3. Performance comparison of sparse reconstruction. Sample face images with detected 
corners: (a) curvature corner (the chosen feature detector by our automated selection algorithm 
for the illustrated sequence), (d) Harris, (g) FAST, (j) STK, and (m) PCC. 3D plots of sparsely 
reconstructed point clouds shown in the best view for illustrating facial structures: (b) curvature 
corner, (e) Harris, (h) FAST, (k) STK, and (n) PCC. Plots of projective depths: (c) curvature 
corner, (f) Harris, (i) FAST, (l) STK, and (o) PCC. Colored curves illustrate the projective 
depths from different frames. The 3D sparse reconstruction using the chosen feature detector, 
curvature corner, preserves major facial structures and produces accurate and robust reconstruc-
tion with all projective depths in the theoretical range. 
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Fig. 4. Quantitative performance comparison of sparsely reconstructed 3D point clouds using 
various corner detectors: the percentage of reconstructed points with a projective depth exceed-
ing the theoretical range. A smaller number suggests better accuracy. The point cloud from the 
chosen feature detector, curvature corner, has the most accurate variations in depth estimation. 
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Fig. 5. Performance comparison of 3D dense reconstruction: (a) curvature corner, (b) Harris, 
(c) STK, and (d) PCC. The reconstructed 3D face model is compared with a reference 3D scan 
of the face. The reference 3D face model is shown in grey. The deviations from the reference 
model are shown in color code (e). The reconstruction based on the chosen detector, curvature 
corner, produces the smallest maximum and average deviations. 
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Fig. 6. Quantitative performance comparison (Hausdorff distance) of the recovered 3D face 
model using various corner detectors. The reconstruction using the chosen detector, curvature 
corner, yields the smallest deviation from the reference model. 
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(5.36). We also list the Hausdorff distance as a quantitative measure of the accuracy 
of dense reconstruction in Fig. 6. We have used the Hausdorff distance instead of the 
commonly used ICP metric because the point clouds are not of comparable resolution. 
Moreover, Hausdorff distance provides an unbiased basis for the comparison of point 
clouds from different feature point detectors. As expected the 3D model using the 
chosen detector, curvature corner, produces the smallest Hausdorff distance and thus 
the best accuracy. Note that to obtain a meaningful reconstruction, the outliers from 
PCC are excluded before deforming the generic face model. Therefore, the final 3D 
reconstruction using PCC presents a comparable accuracy as curvature corners 
Compared with the results from sparse reconstruction, we observe that the perform-
ance gap between the curvature and other corner detectors decreases for dense recon-
struction. This is due to the use of the generic face model as a constraint in the  
optimization process solving for the final dense reconstruction, which imposes addi-
tional bounds on the variations in the structure and reduces the influence of the errors 
from 3D sparse reconstruction. However, the use of the generic model may also  
reduce the useful discriminant structures for differentiating different subjects. In our 
future work, principal component analysis (PCA) will be explored for improved accu-
racy in 3D deformation. With the introduction of more principal components in addi-
tion to the generic face model, which is actually an averaged face model, more useful 
discriminant structures can be reserved. With PCA, the accuracy of sparse reconstruc-
tion plays more important role and hence more substantial performance difference can 
be observed by using different feature detectors. 

5   Conclusions 

In this paper, we proposed an automatic feature selection algorithm that adaptively 
chooses the optimal feature detector according to the input data for the purpose of 3D 
face reconstruction from uncalibrated image sequences. Several widely used corner 
detectors were implemented and served as competitive candidates for our selection 
algorithm. Experiments based on various subjects were performed to qualitatively and 
quantitatively compare the accuracy and robustness of the sparse and dense 3D face 
reconstructions. The chosen detector by our method produced a 3D face reconstruc-
tion with the best accuracy and robustness, which proves the effectiveness of the 
proposed selection algorithm. 
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