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ABSTRACT

In this paper, we describe an algorithm to measure the shape com-
plexity for discrete approximations of planar curves in 2D images
and manifold surfaces for 3D triangle meshes. We base our algo-
rithm on shape curvature, and thus we compute shape information
as the entropy of curvature. We present definitions to estimate
curvature for both discrete curves and surfaces and then formu-
late our theory of shape information from these definitions. We
demonstrate our algorithm with experimental results.

1. INTRODUCTION

Claude Shannon’s seminal paper in 1948 [1] launched a revolu-
tionary field of mathematics that has become known as informa-
tion theory. Shannon’s work formulates a powerful and general
theory to quantize information and in particular to describe in-
formation in a probabilistic framework. Researchers have applied
information theory to such diverse topics as communications, as-
tronomy, crystallography, and nuclear physics. Our goal in this
paper is to apply this theory to geometric contours and shapes. We
present an algorithm to compute the shape information for 2D pla-
nar contours and 3D triangle meshes.

Our motivation for such a metric results from an interest to
measure the complexity of a shape—whether a contour or surface—
in a wide range of applications from computer vision [2], med-
ical imaging [3], and spatial databases [4]. Consider the sphere
and bore pin in Fig. 1. Intuitively, the pin appears more com-
plex than the sphere. How can we quantize our qualitative intu-
ition? In this paper, we propose a computer algorithm that answers
this question. We propose that the sphere contains zero (H∆ =
0 bits) shape information while the pin contains some non-zero
value (H∆ = 7.5 bits). The contributions of this paper are:

• definition of shape information for manifold surfaces and

• development of an algorithm to compute shape information
for triangle meshes.

1.1. Previous Work

We find interest in shape complexity in a diverse array of applica-
tions from satellite imagery [2] to neuron morphology [3]. King
and Rossignac [5] present an interesting paper that is directly rel-
evant to triangle mesh data sets. In this work, the authors con-
sider lossy mesh compression and focus on vertex reduction and
bits per vertex minimization. Toussaint [6] proposes another mea-
sure for shape complexity in 2D based on polygon decomposition.
Chazelle and Incerpi [7] proposed the sinuosity as a measure of
complexity where sinuosity is the number of times that a polygon’s
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Fig. 1. Which 3D object contains more shape information: (a) the
sphere or (b) the bore pin? (c) Zoom view of pin head.

boundary alternates between complete spirals of opposite orienta-
tions [6]. An interesting paper [3] develops a multiscale approach
to measure shape. Bending energy is an interesting measure of
shape where [8] characterize the contours of biological objects.
Vliet and Verbeek [9] extend bending energy definitions to 3D data
sets. The key methods that have inspired our approach are the ones
that employ information theory to shape description. Oddo [2] de-
veloped a segmentation algorithm based on global shape entropy
to extract building boundaries from aerial imagery. The entropy
definitions in Oddo follow from the gray level definitions of en-
tropy in [10].

1.2. Information Theory

Recall that from information theory [1] we can define a random
variable x with a probability density function (pdf) p(x) that de-
scribes the statistics of x. We define the entropy H with the fol-
lowing equation:

H(x) = −

∫
∞

−∞

p(x) log p(x)dx , (1)

where we assume that p(x) is a continuous function. If the log
function is base two, then H is in units of bits. Suppose however
that we discretize p(x) such that pi =

∫ xi

xi−1

p(x)dx where xi

and xi+1 are specific values of x. We can now write a discrete
formulation of Eq. (1) as

H(x) = −
∑

i

pi log pi . (2)

2. PLANAR 2D CURVES

First, we consider the continuous case for 2D curves. Using [11],
we arbitrarily define a planar curve α : I → R

2 parameterized by
arc length s such that we have α(s). We carefully choose, with-
out loss of generality, this parameterization such that the vector
field T = α′ has unit length. With this construction, the deriva-
tive T ′ = α′′ measures the way the curve is turning in R

2 and
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Fig. 2. Curvature estimation for discrete curves and surfaces.

we term T ′ the curvature vector field. Since T ′ is always orthog-
onal to T , i.e. normal to α, we can write T ′ = κN where N is
the normal vector field. The real-valued function κ where κ(s) =
‖α′′(s)‖ is the curvature function of α and completely describes
the shape of α in R

2, up to a translation and rotation. This cur-
vature function is what we intend to exploit to define the shape
information of a curve.

We now recast the curvature function κ(s) for a family of
curves as a random variable. An ensemble of curves with simi-
lar statistics over their associated curvature functions have some
equivalence in a random variable context. Consider a straight line
and a half circle, which both have constant curvature κ(s) = 0
and κ(s) = 1

r
, respectively. The subsequent statistics of these

functions are similar in that the variance of each is zero—a di-
rect consequence of a constant function—and thus their pdfs have
an equivalent shape with only an offset in the translation of their
means. We define these pdfs with the impulse function δ(x) such
that δ(0) → ∞ and

∫
∞

−∞
δ(x)dx = 1. We thus have p(k) = δ(k)

for the straight line and p(k) = δ(k− 1

r
) for the half circle where k

is the random variable for the κ(s) signal. If we apply Eq. (1), both
curves contain no information. Intuitively, this result makes sense
because both curves exhibit no variation in shape and thus possess
zero shape information.

Next, we consider the discrete case. We formulate shape in-
formation from discrete samples of continuous curves. For planar
curve α, we have samples αj = α(sj). We assume that we sam-
ple uniformly across the arc length of the curve such that ∆s =
sj − sj−1 is a constant. This approach leads to N samples over
the curve of α. Since we have uniform sampling along the curve,
the curvature κj is directly proportional to the turning angle θj

formed by the line segments from endpoint αj−1 to endpoint αj

and from αj to αj+1. We illustrate these concepts in Fig. 2(a).
We now need to estimate the pdf of the curvature function

from the θj estimates. To do so, we choose a number of bins M

and associate a probability with each bin. We assume a uniform
bin width ∆θ such that ∆θ = θmax−θmin

M
. The bin probability pi

becomes

pi =
Bi

N
, (3)

where Bi is the number of θj samples that fall in the range θmin +
(i − 1)∆θ ≤ θj < θmin + i∆θ. In practice, we choose a
bin width ∆θ, which then determines the number of bins M . If
we fix ∆θ, we can compare entropy computations among various
shapes.

With these definitions, we can compute the discrete shape in-
formation for a variety of uniformly sampled curves. Consider the
discrete closed curves in Fig. 3. The sample points αj are the joints
of line segments and hash marks for adjoining flat segments. For
example, Fig. 3(b) has sixteen samples with four samples at the
corners and twelve on the flat edges. The corner samples have a π

2

turning angle while the flat samples have a zero angle. Thus, the

(a) 0 (b) 0.8 (c) 0.9 (d) 0.9

(e) 1.7 (f) 1.9 (g) 2.1 (h) 2.2

Fig. 3. These line-segment curves are discrete approximations of
smooth curves. Below each contour we show the shape informa-
tion in bits.

bin probabilities are p0 = 3

4
and p π

2
= 1

4
. This formulation leads

to the entropy H = 0.8 bits.
We should add a few comments. First, note the regular poly-

gon in Fig. 3(a). Since we assume uniform sampling, the orig-
inal surface is a constant curvature circle. As noted previously,
such a curve has zero information, and as expected, our discrete
formulation also gives rise to zero information. So, our discrete
formulation fits nicely with the continuous case. Second, with in-
creasing visual shape complexity, we see increasing entropy from
Figs. 3(a)–3(h). Also, notice that entropy has some relationship to
the symmetry of the curve, as well. The more symmetrical curves
Figs. 3(a)–3(d) have lower shape information relative to the other
curves. Again, this result is intuitive since symmetry implies rep-
etition and thus duplication implies less information. Consider the
two curves in Figs. 3(c) and 3(d). Both of these curves appear
quite different perceptually, but both have equivalent symmetry.
The entropy measure reflects this fact as it is also equivalent. The
symmetry of both leads to equivalent shape information. The fi-
nal comment concerns the magnitude of curvature. We note that
in our formulation of entropy that the magnitude of curvature does
not necessarily effect the amount of information that a shape con-
tains. This notion initially seems counter intuitive since we would
tend to believe that shapes with higher curvature would have more
information. Higher curvature however is rather a level of degree
and not a level of information. Locally, higher curvature points are
similar to lower curvature ones when we view them from a micro-
scopic scale-invariant perspective. A small circle in other words
contains the same amount of information as a large circle where
the difference is scale not information.

3. MANIFOLD 3D SURFACES

We now move our attention to manifold 3D surfaces. Curvature
for surfaces is slightly more complex than curvature for planar
curves. As with 2D, we again derive the following discussion
from [11]. On a smooth surface S, we can define normal cur-
vature as a starting point. Consider Fig. 4. The point p lies on an
smooth surface S, and we specify the orientation of S at p with
the unit-length normal N . We define S as a manifold embedded
in R

3. We can construct a plane Πp that contains p and N such
that the intersection of Πp with S forms a contour α. As before, we
can arbitrarily parameterize α(s) by arc length s where α(0) = p

and α′(0) = T . The normal curvature κp(T ) in the direction of T
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Fig. 4. Illustration of curvature for a surface.

is thus α′′(0) = κp(T )N . This single curvature κp(T ), however,
does not specify the surface curvature of S at p.

We need to do a little more work since Πp is not a unique
plane. If we rotate Πp around N , we form a new contour on S with
its own normal curvature. For this infinite set, we can construct an
orthonormal basis {T1, T2}. The natural choice for this basis is
the tangent vectors associated with the extrema normal curvatures
at p since they are always orthogonal [11]. These vectors {T1, T2}
are the principal directions. The curvatures κ1

p = κp(T1) and
κ2

p = κp(T2) associated with these directions lead to the fol-
lowing relationship at p: κp(Tθ) = κ1

p cos2(θ) + κ2
p sin2(θ) ,

where Tθ = cos(θ)T1 + sin(θ)T2 and −π ≤ θ < π is the
angle to vector T1 in the tangent plane. The extrema curvatures
are known as the principal curvatures and completely specify the
shape of S at p. Combinations of the principal curvatures lead to
other definitions of surface curvature. Perhaps the most common
is Gaussian curvature, which is the product of the principal curva-
tures Kp = κ1

pκ2
p.

For our discrete formulation, we use Gaussian curvature be-
cause a simple formula—the angle excess formula—exists to com-
pute Gaussian curvature from a mesh that approximates a smooth
surface S. Consider Fig. 2(b). The angle φi is the wedge sub-
tended by the edges of a triangle whose corner is at the vertex of
interest. The angle excess is as follows:

Φj = 2π −
∑

i

φi , (4)

where Φj is the angle excess for vertex j. The angle excess Φj has
a direct relationship to Gaussian curvature Kp where we assume
that vertex j approximates point p. Using a similar binning process
as in the previous section, we can estimate the pdf for Φ and thus
compute the shape information H for M bins.

4. EXPERIMENTAL RESULTS

We now investigate the behavior of the algorithm through both
synthetic data and real data. To begin, the contours in Fig. 5 are
extracted from the range image shown. As we would expect, the
contour for the trees 5(b) has a higher shape information than the
building 5(c). This result is similar to the results in [2] and is useful
for sorting boundary contours of man-made and natural objects.

Figs. 6 through 8 show the experimental results for the 3D
meshes. The entropy H∆ below each mesh is in bits. The fan-
disk in Fig. 6(a) is a free-form CAD model with sharp edges and
sophisticated surface curvature. This mesh has the least amount
of shape information as most of the surface has constant curva-
ture patches. The dragon in Fig. 6(b) and bunny in Fig. 6(c) have
greater shape information values, due to the variation in features.
Surprisingly, however, the bunny has the largest entropy value.

(a)

(b) 1.7 (c) 0.5

Fig. 5. Example 2D contours from a laser range image. Below
each we show the shape information in bits. (a) Original range im-
age. (b) Boundary contour extracted from (a) of tree line. (c) Con-
tour for building.
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Fig. 6. Example 3D meshes. Below each we show the
shape information in bits. (a) Fandisk has 12K triangles
(http://research.microsoft.com/research/
graphics/hoppe/). (b) Dragon has 870K triangles.
(c) Bunny has 2M triangles (both (b) and (c) http:
//www.cc.gatech.edu/projects/large_models).
(d–f) Plots of the pdf estimates.

Upon further inspection, we see why. The dragon is a symmetrical
model with many features on one side duplicated on the other, and
the features are repetitive as noted in the zoom view for the skin
scales in Fig. 7(a). The bunny on the other hand is not quite as
symmetrical and the skin in Fig. 7(b) has much greater variation
across the whole model. These factors lead to more shape infor-
mation. A more rigorous investigation is to examine the pdfs in
Figs. 6(d)–6(f). If we consider the pdfs for the dragon and bunny
in Figs. 6(e)–6(f). We see that the bunny has a larger variance. The
more variation in the bunny model, as reflected in the pdf, results
in the larger shape information value.

The final examples are in Fig. 8 where we have used a sheet-
of-light range scanner and a collection of software tools to create
meshes of actual objects. Intuitively, the entropy estimates match
the shape complexity where the waterneck part in Fig. 8(a) has the
least shape information and the crank in Fig. 8(c) has the most.

As with the curves in the prior section, a few caveats are im-
portant. The first caveat regards surfaces with boundaries. The
models shown here are each water tight, which is to say they are
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Fig. 7. Zoom views of skin for dragon and bunny.
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Fig. 8. Example 3D meshes from laser range data. Below each
we show the shape information in bits. (a) Waterneck has 118K
triangles. (b) Head has 80K triangles. (c) Crank has 94K triangles.
(d–f) Plots of the pdf estimates, respectively.

surfaces without boundaries. For boundaries, we simply discard
boundary vertices as we did with end points for curves. Another
caveat regards the selection of the bin width. Since the bin width
governs the probabilities of the pdf and ultimately affects the com-
putation of entropy, we must use the same bin width for each
model in order to validate comparison of entropy values. In other
words, as we change the bin width, we can potentially change the
entropy values and invalidate comparisons among models. For this
paper, we use a common bin width ∆Φ = 5×10−5. We designate
our entropy values H∆ with a subscript ∆ to emphasize this point.

5. CONCLUSIONS

In this paper, we have introduced a novel description of shape com-
plexity for 2D image contours and 3D triangular meshes. Inspired
by Shannon’s concepts for information theory, we call our descrip-
tion shape information. We have proposed an algorithm for com-
puting this metric based on curvature estimates for both discrete
curves and surfaces. The unique contribution of our algorithm is
that we compute a scalar metric that quantifies shape complexity.
This metric, as demonstrated in Figs. 3, 6, and 8, agrees with the
intuition of most human observers and how they might classify the
relative complexity of these shapes. A concept derived from our
proposed metric is that large curvature values do not necessarily in-
crease shape information. Another trait of our metric is that shape
redundancy, such as symmetry or repeating features, lowers the
shape information of a curve or surface. Finally, a key assumption
for our algorithm is uniform sampling. This constraint is a strong
assumption and we thus direct our future investigations toward this
topic.
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